Ричард Фейнман - Том 2. Электромагнетизм и материя

Тут можно читать онлайн Ричард Фейнман - Том 2. Электромагнетизм и материя - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 2. Электромагнетизм и материя
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание

Том 2. Электромагнетизм и материя - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить : гл. 12 (вып. 1) «Характеристики силы»

Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)

Том 2. Электромагнетизм и материя - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

432 Давайте вернемся к нашей аналогии с дробинками и посмотрим есть ли в - фото 231(4.32)

Давайте вернемся к нашей аналогии с «дробинками» и посмотрим, есть ли в ней смысл. Наша теорема утверждает, что суммарный поток дробинок через поверхность равен нулю, если поверхность не окружает собой ружье, стреляющее дробью. А если ружье окружено поверхностью, то какого бы размера или формы она ни была, количество проходящих через нее дробинок всегда одно и то же — оно дается скоростью, с которой дробинки вылетают из ружья. Все это выглядит вполне разумно для сохраняющихся дробинок. Но сообщает ли эта модель нам хоть что-то сверх того, что получается просто из уравнения (4.32)? Никому не удалось добиться того, чтобы «дробинки» произвели на свет что-нибудь сверх этого закона. Кроме него, они порождают только ошибки. Поэтому-то мы сегодня предпочитаем чисто абстрактное представление об электромагнитном поле.

§ 6. Закон Гаусса; дивергенция поля Е

Наш изящный результат — уравнение (4.32) — был доказан для отдельного точечного заряда. А теперь допустим, что имеются два заряда: заряд q 1—в одной точке и заряд (q 2— в другой. Задача выглядит уже потруднее. Теперь электрическое поле, нормальную составляющую которого мы интегрируем, это уже поле, созданное обоими зарядами. Иначе говоря, если E 1—то электрическое поле, которое создал бы один только заряд q 1,a E 2— электрическое поле, создаваемое одним зарядом q 2, то суммарное электрическое поле равно Е= Е 1+ Е 2. Поток через произвольную замкнутую поверхность S равен

433 Поток при наличии двух зарядов это поток вызванный одним зарядом - фото 232(4.33)

Поток при наличии двух зарядов — это поток, вызванный одним зарядом, плюс поток, вызванный другим. Если оба находятся снаружи S , то поток сквозь S равен нулю. Если q 1находится внутри S , а q 2— снаружи, то первый интеграл даст q 1/ε 0, а второй — нуль. Если поверхность окружает оба заряда, то каждый внесет вклад в интеграл и поток окажется равным (q 1+q 2)/ε 0. Общее правило очевидно: суммарный поток из замкнутой поверхности равен суммарному заряду внутри нее, деленному на ε 0.

Этот результат представляет собой важный общий закон электростатического поля, и называется он теоремой Гаусса, или законом Гаусса:

Закон Гаусса:

434 или 435 где 436 Если мы описываем расположение зарядов на языке - фото 233(4.34)

или

435 где 436 Если мы описываем расположение зарядов на языке плотности - фото 234(4.35)

где

436 Если мы описываем расположение зарядов на языке плотности зарядов ρ то - фото 235(4.36)

Если мы описываем расположение зарядов на языке плотности зарядов ρ, то мы можем считать, что каждый бесконечно малый объем dV содержит «точечный» заряд ρ dV . Тогда сумма по всем зарядам есть интеграл

437 Из нашего вывода видно что закон Гаусса вытекает из того факта что - фото 236(4.37)

Из нашего вывода видно, что закон Гаусса вытекает из того факта, что показатель степени в законе Кулона в точности равен двум. Поле с законом 1/r 3, да и любое поле 1/r nс n≠2, не привело бы к закону Гаусса. Значит, закон Гаусса как раз выражает (только в другой форме) закон сил Кулона, действующих между двумя зарядами. Действительно, отправляясь от закона Гаусса, можно вывести закон Кулона. Оба они совершенно равноценны до того момента, пока силы между зарядами действуют радиально.

Теперь мы хотим записать закон Гаусса на языке производных. Чтобы это сделать, применим его к поверхности бесконечно малого куба. В гл. 3 мы показали, что поток Еиз такого куба равен дивергенции · Е, помноженной на объем dV куба. Заряд внутри dV по определению ρ равен ρ dV , так что закон Гаусса дает

Том 2 Электромагнетизм и материя - изображение 237

или

Том 2 Электромагнетизм и материя - изображение 238(4.38)

Дифференциальная форма закона Гаусса — это первое из наших фундаментальных уравнений поля в электростатике, уравнение (4.5). Мы теперь показали, что два уравнения электростатики (4.5) и (4.6) эквивалентны закону силы Кулона. Разберем один пример применения закона Гаусса (другие примеры будут рассмотрены позже).

§ 7. Поле заряженного шара

Одной из самых трудных задач, которую пришлось нам решать, когда мы изучали теорию гравитационного притяжения, было доказать, что сила, создаваемая твердым шаром на его поверхности, такая же, как если бы все вещество шара было сконцентрировано в его центре. Много лет Ньютон не решался обнародовать свою теорию тяготения, так как не был уверен в правильности этой теоремы. Мы доказали ее в вып. 1, гл. 13, взяв интеграл для потенциала и вычислив силу тяготения по градиенту. Теперь эту теорему мы можем доказать очень просто. Но на этот раз мы докажем не совсем ее, а сходную теорему для однородно заряженного электричеством шара. (Поскольку законы электростатики и тяготения совпадают, то то же доказательство может быть проведено и для поля тяготения.)

Зададим вопрос: каково электрическое поле Ев точке Р где-то снаружи сферы, наполненной однородно распределенным зарядом? Так как здесь нет «выделенного» направления, то законно допустить, что Евсюду направлено прямо от центра сферы. Рассмотрим воображаемую сферическую поверхность, концентрическую со сферой зарядов и проходящую через точку Р (фиг. 4.11).

Фиг 411 Применение закона Гаусса для определения поля однородно заряженного - фото 239

Фиг. 4.11. Применение закона Гаусса для определения поля однородно заряженного шара. 1 — распределение заряда ρ; 2 — гауссова поверхность S.

Для этой сферы поток наружу равен

Закон Гаусса утверждает что этот поток равен суммарному заряду сферы Q - фото 240

Закон Гаусса утверждает, что этот поток равен суммарному заряду сферы Q (деленному на ε 0):

или 439 а это как раз та формула которая получилась бы для точечного - фото 241

или

439 а это как раз та формула которая получилась бы для точечного заряда Q - фото 242(4.39)

а это как раз та формула, которая получилась бы для точечного заряда Q . Мы решили проблему Ньютона проще, без интеграла. Конечно, это кажущаяся простота; вам пришлось затратить какое-то время на то, чтобы разобраться в законе Гаусса, и вы можете думать, что на самом деле время нисколько не сэкономлено. Но когда вам придется часто применять эту теорему, то она практически окупится. Все дело в привычке.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 2. Электромагнетизм и материя отзывы


Отзывы читателей о книге Том 2. Электромагнетизм и материя, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x