Ричард Фейнман - Том 2. Электромагнетизм и материя

Тут можно читать онлайн Ричард Фейнман - Том 2. Электромагнетизм и материя - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 2. Электромагнетизм и материя
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание

Том 2. Электромагнетизм и материя - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить : гл. 12 (вып. 1) «Характеристики силы»

Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)

Том 2. Электромагнетизм и материя - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

423 Электрическое поле нескольких зарядов можно записать в виде суммы - фото 212(4.23)

Электрическое поле нескольких зарядов можно записать в виде суммы электрических полей от первого заряда, от второго, от третьего и т. д. Интегрируя сумму для того, чтобы определить потенциал, мы придем к сумме интегралов. Каждый из них — это потенциал соответствующего заряда. Значит, потенциал φ множества зарядов есть сумма потенциалов каждого из зарядов по отдельности. Таким образом, и для потенциалов существует принцип наложения. Пользуясь такими же аргументами, как и тогда, когда мы искали электрическое поле группы зарядов или распределения зарядов, мы можем получить окончательные формулы для потенциала φ в точке, обозначенной как (1):

424 425 Не забывайте что потенциал φ имеет физический смысл это - фото 213(4.24)

425 Не забывайте что потенциал φ имеет физический смысл это потенциальная - фото 214(4.25)

Не забывайте, что потенциал φ имеет физический смысл: это потенциальная энергия, которую имел бы единичный заряд, если его перенести в указанную точку пространства из некоторой отправной точки.

§ 4. E=-∇φ

С какой стати нас заинтересовал потенциал φ? Силы, действующие на заряды, даются величиной Е— электрическим полем. Вся соль в том, что Еиз φ очень легко получить, не труднее, чем вычислить производную. Рассмотрим две точки с одинаковыми у и z, но с разными х : у одной х , у другой x+Δx; поинтересуемся, какую работу надо совершить, чтобы перенести единичный заряд из одной точки в другую. Путь переноса — горизонтальная линия от х до х+Δх. Работа равна разности потенциалов в двух точках

Но работа против действия силы на том же отрезке равна Мы видим что 426 - фото 215

Но работа против действия силы на том же отрезке равна

Мы видим что 426 Равным образом Е у φ y E z φ z все это в - фото 216

Мы видим, что

Том 2 Электромагнетизм и материя - изображение 217(4.26)

Равным образом, Е у =-∂φ/∂ y, E z =-∂φ/∂ z ; все это в обозначениях векторного анализа можно подытожить так:

Том 2 Электромагнетизм и материя - изображение 218(4.27)

Это дифференциальная форма уравнения (4.22). Любую задачу, в которой заряды заданы, можно решить, вычислив по (4.24) или (4.25) потенциал и рассчитав по (4.27) поле. Уравнение (4.27) согласуется также с тем, что получается в векторном анализе: с тем, что для любого скалярного поля

428 Согласно уравнению 425 скалярный потенциал φ представляется - фото 219(4.28)

Согласно уравнению (4.25), скалярный потенциал φ представляется трехмерным интегралом, подобным тому, который мы писали для Е. Есть ли какая выгода в том, что вместо Евычисляется φ? Да. Для вычисления φ нужно взять один интеграл, а для вычисления Е— три (ведь это вектор). Кроме того, обычно 1/r интегрировать легче, чем x/r 3. Во многих практических случаях оказывается, что для получения электрического поля легче сперва подсчитать φ, а после взять градиент, чем вычислять три интеграла для Е. Это просто вопрос удобства.

Но потенциал φ имеет и глубокий физический смысл. Мы показали, что Езакона Кулона получается из Е=-gradφ, где φ дается уравнением (4.22). Но если Е— это градиент скалярного поля, то, как известно из векторного исчисления, ротор Едолжен обратиться в нуль:

Том 2 Электромагнетизм и материя - изображение 220(4.29)

Но это и есть наше второе основное уравнение электростатики — уравнение (4.6). Таким образом, мы показали, что закон Кулона дает поле Е, удовлетворяющее этому условию. Так что до сих пор все в порядке.

На самом деле то, что × Еравно нулю, было доказано еще до того, как мы определили потенциал. Мы показали, что работа обхода по замкнутому пути равна нулю, т. е.

по любому пути Мы видели в гл 3 что в таком поле Едолжно быть всюду равно - фото 221

по любому пути. Мы видели в гл. 3, что в таком поле × Едолжно быть всюду равно нулю. Электрическое поле электростатики — это поле без роторов.

Вы можете потренироваться в векторном исчислении, доказав равенство нулю вектора × Едругим способом, т. е. вычислив компоненты вектора × Едля поля точечного заряда по формулам (4.11). Если получится нуль, то принцип наложения обеспечит нам обращение × Ев нуль для любого распределения зарядов.

Следует подчеркнуть важный факт. Для любой радиальной силы выполняемая работа не зависит от пути и существует потенциал. Если вы вдумаетесь в это, то увидите, что все наши доказательства того, что интеграл работы не зависит от пути, сами определялись только тем, что сила от отдельного заряда была радиальна и сферически симметрична. То, что зависимость силы от расстояния имела вид 1/r 2, не имело никакого значения, при любой зависимости от r получилось бы то же самое. Существование потенциала и обращение в нуль ротора Евытекают на самом деле только из симметрии и направленности электростатических сил. По этой причине уравнение (4.28) или (4.29) может содержать в себе только часть законов электричества.

§ 5. Поток поля Е

Теперь мы хотим вывести уравнение, которое непосредственно и в лоб учитывает тот факт, что закон силы — это закон обратных квадратов. Кое-кому кажется «вполне естественным», что поле меняется обратно пропорционально квадрату расстояния, потому что «именно так, мол, все распространяется». Возьмите световой источник, из которого льется поток света; количество света, проходящее через основание конуса с вершиной в источнике, одно и то же независимо от того, насколько основание удалено от вершины. Это с необходимостью следует из сохранения световой энергии. Количество света на единицу площади — интенсивность — должно быть обратно пропорционально площади, вырезанной конусом, т. е. квадрату расстояния от источника. Ясно, что по той же причине и электрическое поле должно изменяться обратно квадрату расстояния!

Но здесь ведь нет ничего похожего на «ту же причину». Ведь никто не может сказать, что электрическое поле есть мера чего-то такого, что похоже на свет и что поэтому должно сохраняться. Если бы у нас была такая «модель» электрического поля, в которой вектор поля представлял бы направление и скорость (ну, например, был бы током) каких-то вылетающих маленьких «дробинок», и если бы эта модель требовала, чтобы число дробинок сохранялось и ни одна не могла пропасть после вылета из заряда, вот тогда мы могли бы говорить, что «чувствуем» неизбежность закона обратных квадратов. С другой стороны, непременно должен был бы существовать математический способ выражения этой физической идеи. Если бы электрическое поле было подобно сохраняющимся дробинкам, то оно менялось бы обратно пропорционально квадрату расстояния и мы могли бы описать такое поведение некоторым уравнением, т. е. чисто математическим путем. Если мы не утверждаем, что электрическое поле сделано из дробинок, а понимаем, что это просто модель, помогающая нам прийти к правильной математической теории, то ничего плохого в таком способе рассуждений нет.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 2. Электромагнетизм и материя отзывы


Отзывы читателей о книге Том 2. Электромагнетизм и материя, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x