Ричард Фейнман - Том 2. Электромагнетизм и материя

Тут можно читать онлайн Ричард Фейнман - Том 2. Электромагнетизм и материя - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 2. Электромагнетизм и материя
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание

Том 2. Электромагнетизм и материя - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить : гл. 12 (вып. 1) «Характеристики силы»

Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)

Том 2. Электромагнетизм и материя - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

или

Обратите внимание что это же можно написать и так 829 Интеграл в 828 - фото 483

Обратите внимание, что это же можно написать и так:

829 Интеграл в 828 отвечает сложению обоих слагаемых в скобках выражения - фото 484(8.29)

Интеграл в (8.28) отвечает сложению обоих слагаемых в скобках выражения (8.29). Вот зачем нужен множитель 1/ 2.

Интересен и такой вопрос: где размещается электростатическая энергия? Правда, можно в ответ спросить: а не все ли равно? Есть ли смысл у такого вопроса? Если имеется пара взаимодействующих зарядов, то их сочетание обладает некоторой энергией. Неужели нужно непременно уточнять, что энергия сосредоточена на этом заряде, или на том, или на обоих сразу, или между ними? Все эти вопросы лишены смысла, потому что мы знаем, что на самом деле сохраняется только полная, суммарная энергия. Представление о том, что энергия сосредоточена где - то , не так уж необходимо.

Ну а все же предположим, что в том, что энергия всегда сосредоточена в каком-то определенном месте (подобно тепловой энергии), действительно смысл есть . Тогда мы могли бы наш принцип сохранения энергии расширить , соединив его с идеей о том, что если в каком-то объеме энергия меняется, то это изменение можно учесть, наблюдая приток или отток энергии из объема. Вы ведь понимаете, что наше первоначальное утверждение о сохранении энергии по-прежнему будет превосходно выполняться, если какая-то энергия пропадет в одном месте и возникнет где-то далеко в другом, а в промежутке между этими местами ничего не случится (ничего — это значит не случится каких-либо явлений особого рода). Поэтому мы можем перейти теперь к расширению наших идей о сохранении энергии. Назовем это расширение принципом локального (местного) сохранения энергии. Такой принцип провозглашал бы, что энергия внутри любого данного объема изменяется лишь на количество, равное притоку (или убыли) энергии в объем (или из него). И действительно, такое локальное сохранение энергии вполне возможно. Если это так, то в нашем распоряжении будет куда более детальный закон, чем простое утверждение о сохранении полной энергии. И, как оказывается, в природе энергия действительно сохраняется локально, в каждом месте порознь , и можно написать формулы, показывающие, где энергия сосредоточена и как она перетекает с места на место.

Имеется и физический резон в требовании, чтобы мы были в состоянии указать, где именно заключена энергия. По теории тяготения всякая масса есть источник гравитационного притяжения. А по закону Е = mc 2мы также знаем, что масса и энергия вполне равноценны друг другу. Стало быть, всякая энергия является источником силы тяготения. И если б мы не могли узнать, где находится энергия, мы бы не могли знать, где расположена масса. Мы не могли бы сказать, где размещаются источники поля тяготения. И теория тяготения стала бы неполной.

Конечно, если мы ограничимся электростатикой, то способа узнать, где сосредоточена энергия, у нас нет. Но полная система максвелловских уравнений электродинамики снабдит нас несравненно более полной информацией (хотя и тогда, строго говоря, ответ до конца определенным не станет). Подробнее мы этот вопрос рассмотрим позже. А сейчас приведем лишь результат, касающийся частного случая электростатики. Энергия заключена в том пространстве, где имеется электрическое поле. Это, видимо, вполне разумно, потому что известно, что, ускоряясь, заряды излучают электрические поля. И когда свет или радиоволны распространяются от точки к точке, они переносят с собой свою энергию. Но в этих волнах нет зарядов. Так что энергию хотелось бы размещать там, где есть электромагнитное поле, а не там, где есть заряды, создающие это поле. Таким образом, мы описываем энергию не на языке зарядов, а на языке создаваемых ими полей. Действительно, мы можем показать, что уравнение (8.28) численно совпадает с

830 Эту формулу можно толковать говоря что в том месте пространства где - фото 485(8.30)

Эту формулу можно толковать, говоря, что в том месте пространства, где присутствует электрическое поле, сосредоточена и энергия; плотность ее (количество энергии в единице объема) равна

831 Эта идея иллюстрируется фиг 88 Фиг 88 Каждый элемент объема - фото 486(8.31)

Эта идея иллюстрируется фиг. 8.8.

Фиг 88 Каждый элемент объема dVdxdydz в электрическом поле содержит в себе - фото 487

Фиг. 8.8. Каждый элемент объема dV=dxdydz в электрическом поле содержит в себе энергию (ε 0 /2) E 2 dV.

Чтобы показать, что уравнение (8.30) согласуется с нашими законами электростатики, начнем с того, что введем в уравнение (8.28) соотношение между ρ и φ, полученное в гл. 6:

Получим 832 Расписав покомпонентно подынтегральное выражение мы увидим - фото 488

Получим

832 Расписав покомпонентно подынтегральное выражение мы увидим что А - фото 489(8.32)

Расписав покомпонентно подынтегральное выражение, мы увидим, что

А наш интеграл энергий тогда равен С помощью теоремы Гаусса второй интеграл - фото 490

А наш интеграл энергий тогда равен

С помощью теоремы Гаусса второй интеграл можно превратить в интеграл по - фото 491

С помощью теоремы Гаусса второй интеграл можно превратить в интеграл по поверхности:

834 Этот интеграл мы подсчитаем для того случая когда поверхность - фото 492(8.34)

Этот интеграл мы подсчитаем для того случая, когда поверхность простирается до бесконечности (так что интеграл по объему обращается в интеграл по всему пространству), а все заряды расположены на конечном расстоянии друг от друга. Проще всего это сделать, взяв поверхность сферы огромного радиуса с центром в начале координат. Мы знаем, что вдали от всех зарядов φ изменяется как 1/R, а ∇φ как 1/ R 2. (И даже быстрее, если суммарный заряд нуль.) Площадь же поверхности большой сферы растет только как R 2, так что интеграл по поверхности убывает по мере возрастания радиуса сферы как (1/R)(1/R 2)/R 2=(1/ R ). Итак, если наше интегрирование захватит собой все пространство (R→∞), то поверхностный интеграл обратится в нуль, и мы обнаружим

835 Мы видим что существует возможность представить энергию произвольного - фото 493(8.35)

Мы видим, что существует возможность представить энергию произвольного распределения зарядов в виде интеграла от плотности энергии, сосредоточенной в поле.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 2. Электромагнетизм и материя отзывы


Отзывы читателей о книге Том 2. Электромагнетизм и материя, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x