Ричард Фейнман - КЭД – странная теория света и вещества
- Название:КЭД – странная теория света и вещества
- Автор:
- Жанр:
- Издательство:АСТ
- Год:2018
- Город:Москва
- ISBN:978-5-17-982850-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - КЭД – странная теория света и вещества краткое содержание
В основу этой книги легли знаменитые лекции Ричарда Фейнмана, прочитанные им в Калифорнийском университете.
В этих лекциях прославленный физик рассказывает о квантовой электродинамике – теории, в создании которой принимал участие он сам, – рассказывает простым и доступным языком, понятным даже самому обычному читателю.
Не зря даже о самом первом, принстонском издании «КЭД» критики писали: «Книга, которая полностью передает захватывающий и остроумный стиль Фейнмана, сделавшего квантовую электродинамику не только понятной, но и занятной!»
КЭД – странная теория света и вещества - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
8
Математики старались найти все возможные объекты, подчиняющиеся алгебраическим правилам (А+В=В+А, A×В = В×А и т. п.). Первоначально правила были выработаны для положительных целых чисел, которыми пользовались, чтобы считать, например яблоки или людей. Числа совершенствовались: придумали нуль, дроби, иррациональные числа, т. е. числа, которые нельзя представить как частное от деления двух целых чисел, отрицательные числа – и все они по-прежнему подчинялись тем же алгебраическим правилам. Некоторые введенные математиками числа сначала представляли для людей трудности – трудно было представить себе половину человека, но сегодня в этом нет ничего сложного. Никто не представляет себе кровопролития и не испытывает моральных неудобств, услышав, что где-то на квадратную милю приходится в среднем 3,2 человека. Никто не пытается представить себе 0,2 человека; люди понимают, что означают эти 3,2: если умножить 3,2 на 10, получится 32. Таким образом, некоторые удовлетворяющие математическим законам явления представляют интерес для математиков, даже если они не всегда соответствуют реальной ситуации. Стрелки на плоскости можно «складывать», приставляя голову одной к хвосту другой, или «умножать» при помощи последовательных поворотов и сжатий. Так как эти стрелки подчиняются тем же алгебраическим правилам, что и обычные числа, математики называют их числами. Но чтобы отличать их от обычных чисел, их называют «комплексными числами». Для тех из вас, кто дошел в изучении математики до комплексных чисел, я мог бы сказать: «Вероятность события – это квадрат модуля комплексного числа. Если событие может произойти несколькими взаимоисключающими способами, вы складываете комплексные числа; если оно может произойти только в результате последовательных этапов, вы умножаете комплексные числа». Хотя эта формулировка может звучать более внушительно, я не сказал ничего нового – я просто использовал другие выражения.
9
Заметьте, что мы округлили 0,0384 до 0,04 и взяли 84 % в качестве 0,92 в квадрате, чтобы получить все 100 % света. Но если складывать всё, то незачем будет округлять 0,0384 и 84 % – все мельчайшие кусочки стрелок (представляющие все возможные пути движения света) компенсируются и дают правильный ответ. Для тех из вас, кто любит такие вещи, привожу пример еще одного пути, по которому свет мог идти из источника в детектор – последовательность трех отражений (и двух пропусканий), результатом чего является суммарная стрелка длиной 0,98×0,2×0,2×0,2×0,98 или примерно 0,008 – очень маленькая стрелка (см. рис. 46). Чтобы полностью рассчитать частичное отражение от двух поверхностей, вам придется учесть и эту маленькую стрелку, и еще меньшую, представляющую пять отражений, и так далее.
10
Это правило соответствует тому, чему учат в школе: количество света, распространяющегося на какое-то расстояние, обратно пропорционально квадрату расстояния – потому что квадрат стрелки, сжавшейся наполовину, равен одной четверти исходного квадрата.
11
Это явление, получившее название «эффект Ханбэри – Брауна – Твисса», используют, чтобы различать единичные и двойные источники радиоволн в далеком космосе, даже если составляющие двойного источника находятся очень близко друг к другу.
12
Надо помнить об этом принципе, чтобы не прийти в замешательство, столкнувшись с «редукцией волнового пакета» и тому подобной магией.
13
Полное описание данного эксперимента очень интересно: если детекторы в A и В не идеальны и детектируют фотоны только в части случаев, имеются три различных конечных условия: 1) детекторы в A и D срабатывают; 2) детекторы в В и D срабатывают; 3) только детектор в D срабатывает, а детекторы в A и В не срабатывают (остаются в начальном состоянии). Вероятности первых двух событий вычисляются так, как объяснялось выше (за исключением добавочного этапа – сжатия стрелки пропорционально амплитуде срабатывания детектора в А или В – поскольку детекторы не идеальны). В случае, когда срабатывает только детектор в D, мы не можем различить возможности, и Природа играет с нами, вводя интерференцию. Такой же необычный ответ мы получили бы, совсем не имея детекторов в A и B (отличие лишь в том, что конечная стрелка сжимается пропорционально амплитуде несрабатывания детекторов). Окончательный ответ есть смесь, простая сумма вероятностей всех трех случаев (см. рис. 51). По мере возрастания надежности детекторов интерференция ослабляется.
14
У Фейнмана «wavicle» – от англ. wave (волна) и particle (частица). – Примеч. пер.
15
В этих лекциях я изображаю пространственное положение точки при помощи одного измерения, вдоль оси X. Чтобы определить положение точки в трехмерном пространстве, надо представить себе «комнату» и измерить расстояния от точки до пола и двух примыкающих стен (которые расположены под прямыми углами друг к другу). Эти три расстояния можно обозначить X1, Y1 и Z1. Расстояние от данной точки до другой точки с соответствующими расстояниями Х2, Y2, Z2 можно вычислить при помощи «трехмерной теоремы Пифагора»: квадрат расстояния между двумя точками равен // (X2–X1)2 + (Y2–Y1)2 + (Z2–Z1)2. // Разность этой величины и квадрата временного расстояния, // (X2–X1)2 + (Y2–Y1)2+ (Z2–Z1)2 – (T2–T1)2, // называют иногда «интервалом» I. В соответствии с теорией относительности Эйнштейна, именно от такой комбинации расстояний должна зависеть величина Р(А – В). Наибольший вклад в результирующую стрелку Р(А – В) набегает именно там, где вы этого ожидаете – где пространственное расстояние равно временному (т. е. где интервал I равен нулю). Но кроме того, имеется вклад от не равного нулю I, обратно пропорциональный I и направленный к 3 часам при Iположительном (когда свет летит быстрее скорости света) и к 9 часам при I отрицательном. Во многих случаях эти последние вклады взаимно гасятся (см. рис. 56).
16
Формула для Е(А – В) сложна, но есть интересный способ пояснить, к чему она сводится. Эта величина может быть представлена в виде гигантской суммы по множеству различных путей, которыми электрон может попасть из точки А в точку В в пространстве-времени (см. рис. 57). Электрон может совершить «однопрыжковый перелет» из А прямо в В, «двухпрыжковый перелет» с остановкой в промежуточной точке С, «трехпрыжковый перелет» с остановками в D и Е и т. д. При таком рассмотрении амплитуда каждого «прыжка» – из одной точки F в другую точку G – равна P(F – G), т. е. совпадает с амплитудой попадания фотона из F в G. Амплитуда каждой «остановки» равна n2, где n – число, о котором я упоминал раньше и которым мы пользуемся, чтобы получить правильный ответ. // Формула для Е(А – В) есть, следовательно, сумма членов Р(А – В) [ «однопрыжковый перелет»] +Р(А – С)×n2×Р(С – В) [ «двухпрыжковый перелет» с остановкой в С] +P(A – D)×n2×P(D – E)×n2×Р(Е – В) [ «трехпрыжковый перелет» с остановками в D и E] + … для всех возможных промежуточных точек С, D, E, … // Заметьте, что с увеличением n возрастает вклад непрямых путей в результирующую стрелку. Если n равно нулю (для фотона), все члены с n выпадают (они тоже равны нулю), и остается только первый член, Р(А – В). Итак, Е(А – В) и Р(А – В) тесно связаны.
Читать дальшеИнтервал:
Закладка: