Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Тут можно читать онлайн Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Центрполиграф, год 2006. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Популярная физика. От архимедова рычага до квантовой механики
  • Автор:
  • Жанр:
  • Издательство:
    Центрполиграф
  • Год:
    2006
  • Город:
    М.
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание

Популярная физика. От архимедова рычага до квантовой механики - описание и краткое содержание, автор Айзек Азимов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)

Популярная физика. От архимедова рычага до квантовой механики - читать книгу онлайн бесплатно, автор Айзек Азимов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Оказывается, что числа, представляющие собой приращения скорости, получаемые в результате падения тела со все большей высоты, действительно образуют сходящийся ряд. Поскольку тело падает со все большей и большей высоты, окончательная скорость соударения не увеличивается беспредельно; вместо этого она имеет тенденцию стремиться к некоторой предельной скорости, превзойти которую не может.

Эта предельная скорость соударения (v,) зависит от значения g и радиуса (r) тела, которое является источником поля тяготения. Важность величины радиуса опирается на тот факт, что чем больше его значение, тем медленнее «затухает» при увеличении расстояния значение g. Предположим, что тело имеет радиус 1000 километров. Находящееся на расстоянии 10 000 километров от его центра падающее тело в десять раз дальше от центра, чем объект, лежащий на его поверхности, и поэтому значение g там равно всего 1/ 100значения на поверхности. Предположим далее, что тело имеет радиус 2000 километров, находящееся на расстоянии 10 000 километров от его центра падающее тело будет тогда только в пять раз дальше от центра, чем объект, находящийся на поверхности. И значение g соответственно будет равно только 1/ 25значения на поверхности. Поэтому по мере прохождения высот значение g уменьшалось бы более быстро для маленького тела, чем для большого, и окончательная скорость соударения была бы меньше для маленького тела, несмотря на то что поверхностное значение его g может быть тем же самым, что и у большого тела.

Оказывается, что:

v 1= √(2gr). (Уравнение 5.4) [22] Поскольку эта книга является «велением в физику, я не всегда буду давать деривацию используемых уравнения, так как это может вовлечь в разговор необъясненные концепции или математические методы, которые я предпочитаю не использовать.

В системе МКС значение g равно 9,8 м/с 2, что касается г, то оно равно 6 370 000 м, таким образом, 2gr равно приблизительно 124 800 000 м 2/с 2. При извлечении квадратного корня из этого числа мы должны также извлечь квадратный корень и из единиц измерения. Так как квадратный корень из a 2b 2 равен ab, должно быть ясно, что квадратный корень из м 2/с 2равен м/с. Квадратный корень из 124 800 000 м 2/с 2равен приблизительно 11 200 м/с. То есть предел скорости соударения равен 11,2 км/с (или примерно семь миль в секунду). Ни один объект, падая по направлению к Земле из состояния покоя, не может когда-либо удариться об нее со скоростью большей чем 11,2 км/с. (Конечно, если рассматриваемый объект представляет собой метеор или что-либо в этом роде, который летит с ускорением в направлении Земли, то его собственная скорость добавится к скорости, вызванной полем тяготения Земли, и он ударится о Землю со скоростью соударения большей чем 11,2 км/с.) Для Луны, на которой значения g и г гораздо меньше, максимальная скорость соударения будет равна только 2,4 км/с (или 1,5 мили в секунду).

Давайте теперь рассмотрим этот вопрос с другой точки зрения. Вместо падающего тела рассмотрим такое, которое перемешается вверх от поверхности Земли. Для тела, перемещающегося вверх, g представляет собой величину, на которую его скорость уменьшается в каждую секунду полета. В данном случае ситуация развивается с точностью до наоборот, то есть если тело, первоначально находившееся в состоянии покоя, падает с высоты h и в момент соударения достигает скорости v, то тело, брошенное вверх со скоростью v, перед тем как остановиться, достигнет высоты h (и начнет падать назад, по направлению к Земле).

Но тело, падающее с любой высоты, однако, никогда не может достигнуть скорости соударения большей чем 11,2 км/с. Это означает, что, если тело бросают вверх со скоростью 11,2 км/с или больше, оно никогда не достигнет точки покоя и поэтому никогда не упадет обратно на Землю (взаимное влияние и наложение гравитационных полей других тел мы не рассматриваем).

Таким образом, предел скорости соударения — это также скорость, с которой тело, подброшенное вверх, навсегда улетит с Земли; поэтому такая скорость называется «второй космической скоростью». Вторая космическая скорость на поверхности Земли равна 11,2 км/с, а вторая космическая скорость на поверхности Луны — 2,4 км/с.

Тело, которое находится на орбите вокруг Земли, не может улететь от нее. Оно падает на Землю, и только его горизонтальная скорость препятствует этому падению вниз. Поэтому для того чтобы удержать объект на орбите, требуется гораздо меньшая скорость, чем та, которая нужна, чтобы вывести его на нее. Для круговой орбиты скорость должна быть равна √gr, где r — расстояние от орбитального тела до центра земли, a g — величина ускорения свободного падения на таком расстоянии. В непосредственной близости от поверхности Земли такая скорость составляет 7,9 км/с (или 4,9 мили в секунду). Орбитальные спутники перемещаются с такой скоростью и заканчивают свое «кругосветное путешествие» длиной 40 000 километров за минимальное время в 85 минут.

По мере увеличения расстояния от центра Земли значение г, конечно, увеличивается, в то время как значение g — уменьшается, изменяясь как 1/r 2. Изменение √gr (которая называется «первой космической», или «орбитальной», скоростью) происходит как √(1/r 2)/r или √(1/r). Другими словами, первая космическая скорость тела изменяется обратно пропорционально квадратному корню из расстояния до объекта, вокруг которого вращается данное тело.

Мы знаем, что расстояние от Луны до центра Земли равно 382 400 километрам. Это в 60,3 раза больше расстояния от центра орбитального спутника, находящегося сразу за пределами атмосферы. Поэтому на Луне первая космическая скорость меньше, чем такая же на Земле, коэффициент пересчета равен √60,3. Другими словами, первая лунная космическая скорость равна 7,9/√60,3, или примерно 1 км/с.

Теперь рассмотрим спутник, находящийся на орбите в 42 000 километров от центра Земли (приблизительно 35 600 километров над ее поверхностью). Его расстояние от центра Земли в 6,6 раза больше, чем у объекта на поверхности Земли. Его первая космическая скорость поэтому равна 7,9/√6,6, или почти 3,1 км/с. Длина его орбиты приблизительно равна 264 000 километрам, и при достижении первой космической скорости спутнику потребуется как раз 24 часа для того, чтобы совершить одно обращение вокруг планеты. Поэтому при таких условиях спутник будет двигаться со скоростью вращения Земли, а нам будет казаться, что он неподвижно висит на небе. Такие внешне неподвижные спутники прекрасно служат в качестве спутников связи.

Глава 6.

МОМЕНТ

Импульс

Давайте снова рассмотрим падающее тело. Объект, удерживаемый в некоторой точке над землей, находится в состоянии покоя. Если мы отпустим его, то он сразу начнет падать. Очевидно, что мы создали движение там, где его изначально не существовало. Но «создали» — слово, которое физики переваривают с трудом (для этого существуют философы). Разве что-нибудь действительно может быть создано из ничего? Или одна вещь просто превращается в другую, так что вторая появляется только за счет перехода первой в состояние небытия? Или, возможно, один объект подвергается изменениям (например, переходит из состояния покоя в стадию движения, например) потому и только потому, что другой объект подвергается противодействующим изменениям (например, из состояния покоя — в стадию движения, но в противоположном направлении). В этом последнем случае то, что создано, не является движением, а является движением плюс «антидвижение», и если сложить их вместе, то мы получим нуль, а следовательно, возможно, что никакого движения не было создано вообще.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Айзек Азимов читать все книги автора по порядку

Айзек Азимов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Популярная физика. От архимедова рычага до квантовой механики отзывы


Отзывы читателей о книге Популярная физика. От архимедова рычага до квантовой механики, автор: Айзек Азимов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x