Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Тут можно читать онлайн Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Центрполиграф, год 2006. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Популярная физика. От архимедова рычага до квантовой механики
  • Автор:
  • Жанр:
  • Издательство:
    Центрполиграф
  • Год:
    2006
  • Город:
    М.
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание

Популярная физика. От архимедова рычага до квантовой механики - описание и краткое содержание, автор Айзек Азимов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)

Популярная физика. От архимедова рычага до квантовой механики - читать книгу онлайн бесплатно, автор Айзек Азимов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

И все же, может быть, мы немного пофантазируем и попытаемся придумать случаи, когда этот закон не соответствует действительности? Например, предположим, что бильярдный шар бьет в борт бильярдного стола и отскакивает по своей собственной линии удара. Его скорость была v, стала после отскока — у, и так как его масса не изменилась, то первоначальная величина mv количества движения стала равна — mv. Разве это не явное изменение количества движения?

Да, это так. Но бильярдный шар не представляет собой систему целиком. Полная система включает в себя борт бильярдного стола, который приложил импульс, изменивший количество движения бильярдного шара. В действительности, так как бильярдный стол удержан на основании (земле) при помощи сил трения, преодолеть которые шар не может из-за их слишком большой величины, то система включает в себя также и всю планету. Количество движения Земли изменяется ровно настолько, чтобы компенсировать изменение в количестве движения бильярдного шара. Однако масса Земли значительно больше, чем у бильярдного шара, и изменение в ее скорости поэтому также соответственно меньше — слишком ничтожно малое, чтобы быть обнаруженным любыми известными человеку средствами.

Все же можно было бы предположить, что, если достаточное количество бильярдных шаров, двигающихся в одном и том же направлении, будут ударять в достаточное количество бильярдных столов в течение достаточно долгого времени, движение Земли могло бы быть ощутимо изменено. Как бы не так! Каждый ударяющийся бильярдный шар должен ударить противоположный край стола, или вашу руку, или какое-то другое препятствие. Но если даже он просто медленно остановится благодаря трению (которое можно рассматривать как серию микроударов шара о ткань стола), это ничего не изменит. Независимо от того, каким образом двигается бильярдный шар, он распределит изменения в своем количестве движения одинаково в обоих направлениях, прежде чем остановится, если только непосредственно вовлечены шар и Земля.

В наиболее общем случае распределение количества движения между Землей и всеми подвижными объектами на ее поверхности или около может время от времени изменяться, но полное количество движения и поэтому общая скорость Земли плюс всех этих подвижных объектов (предполагая, что общая масса остается неизменной) должны оставаться теми же самыми. Никакая величина или вид взаимодействия среди компонентов системы не могут изменить полное количество движения этой системы.

А теперь решение проблемы падающего тела, которой я открыл данную главу. В то время как тело падает, оно получает некоторое количество движения (mv), это количество движения нарастает по мере увеличения скорости. Система, однако, состоит не только из одного падающего тела. Сила тяготения, которая вызывает движение, относится и к телу, и к Земле. Следовательно, Земля должна получить количество движения, равное (–mv), двигаясь навстречу телу. Из-за огромной массы Земли это ее встречное ускорение исчезающе мало и при любых практических вычислениях может игнорироваться. Однако принцип остается. Когда тело падает, движение не создается из ничего. Скорее возникает и движение тела, и антидвижение Земли, и эти два движения взаимоисключаются. Полное количество движения Земли и падающего тела относительно друг друга является нулевым до того, как тело начинает падать, нулевым — после того, как оно заканчивает падение, и нулевым — в любой произвольно взятый момент времени в течение его падения.

Вращательное движение

До сих пор я рассматривал движение, как если бы оно вовлекало перемещение объекта через пространство в едином целом с различными частями объекта, поддерживающими их взаимную неизменяемую ориентацию. Такое движение называется «поступательным» (translationat) — от латинских слов, означающих «переносить».

Однако возможно и перемещение тела, при котором оно не будет двигаться через пространство как единое целое, но при этом — все же будет перемещаться. Например, центр колеса может быть закреплен на одном месте, чтобы колесо в целом не изменяло своего положения; однако само колесо может вращаться относительно этого центра. Подобным же образом сфера, установленная в пределах некоторого объема пространства, может вращаться вокруг некоторой установленной линии, оси. Этот вид движения называется «вращательным» (rotational) — от латинского слова, означающего «колесо». (Конечно, тело может двигаться и в комбинации из этих двух типов движения, как это делает бейсбольный мяч, который крутится, одновременно перемещаясь вперед, или как Земля, которая вращается вокруг своей оси, одновременно перемещаясь вперед по своей орбите вокруг Солнца.)

Вращательное движение весьма аналогично поступательному, но рассмотрение его требует изменения точки зрения. Например, мы привыкли думать о скорости поступательного движения в терминах «миля в час» или «сантиметры в секунду», во вращательном движении единицы измерения другие. Кроме того, мы принимаем как очевидное, что если одна часть тела имеет некоторую скорость поступательного движения, то и все остальные части тела имеют такую же скорость. Другими словами — весь самолет перемещается вперед со скоростью своего носа.

В случае вращательного движения эти вопросы различны. Точка на ободе вращающегося колеса перемещается уже с некоторой скоростью, точка, находящаяся ближе к центру колеса, перемещается с меньшей скоростью, а точка, находящаяся еще ближе к центру, перемещается с еще меньшей скоростью. Точка, находящаяся в центре вращающегося колеса, неподвижна. Поэтому сказать, что колесо вращается со скоростью столько-то сантиметров в секунду, является бессмысленным, если мы не указываем точную часть колеса, к которой относится данное высказывание, а это может быть достаточно неудобно.

Было бы более удобно, если бы мы могли найти некоторый метод измерения скорости вращения, который был бы применим сразу ко всему телу вращения. Одним из таких методов может быть рассмотрение числа оборотов тела за единицу времени. Хотя различные точки на колесе могут двигаться с различной скоростью, каждая точка на колесе заканчивает вращение в один и тот же момент времени, так как колесо вращается «как единое целое». Поэтому мы можем говорить о колесе (или любом другом объекте вращения), что оно «имеет скорость в столько-то вращений в минуту» (обычно это выражение сокращают как «об/мин», или «rpm» — от английского «revolutions per minute».

Или мы могли бы разделить одно обращение колеса на 360 равных частей, называемых «градусами» (сокращенно градус обозначается значком °. В этом случае 1 оборот в минуту был бы равен 360 град./мин, или 6 град./с (градусов в секунду). В то время как колесо поворачивается на какой-то градус линия, соединяющая центр колеса с точкой на его ободе, образует угол. Поэтому о скорости, данной в оборотах в минуту или в градусах в секунду, обычно говорят как об «угловой скорости».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Айзек Азимов читать все книги автора по порядку

Айзек Азимов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Популярная физика. От архимедова рычага до квантовой механики отзывы


Отзывы читателей о книге Популярная физика. От архимедова рычага до квантовой механики, автор: Айзек Азимов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x