Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Тут можно читать онлайн Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Центрполиграф, год 2006. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Популярная физика. От архимедова рычага до квантовой механики
  • Автор:
  • Жанр:
  • Издательство:
    Центрполиграф
  • Год:
    2006
  • Город:
    М.
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание

Популярная физика. От архимедова рычага до квантовой механики - описание и краткое содержание, автор Айзек Азимов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)

Популярная физика. От архимедова рычага до квантовой механики - читать книгу онлайн бесплатно, автор Айзек Азимов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вращательное движение способно совершаться любым из двух зеркально отраженных способов. Если смотреть из некоторого фиксированного положения, то колесо может выглядеть вращающимся «по часовой стрелке», то есть в том же направлении, в котором двигаются стрелки часов. Но с другой стороны, оно может двигаться «против часовой стрелки», то есть в сторону, противоположную движению стрелок часов [25] Важно отметить фразу «из некоторого фиксированного положения», потому что термины «по часовой стрелке» и «против часовой стрелки» не являются абсолютными. Колесо может казаться поворачивающимся по часовой стрелке, когда вы смотрите на него с одной стороны, но если вы переходите на противоположную сторону, то рассматриваемое колесо будет казаться вам поворачивающимся против часовой стрелки. То же самое истинно, если мы говорим о поступательном движении, что тело двигалось «влево» или «право» или «к» и «от». Все эти термины имеют значение только тогда, когда вы учитываете ваше собственное расположение. Однако если вы говорите относительно «севера», «юга», «востока» или «запада», то эти термины устанавливаются относительно Земли и не зависят от вашего собственного расположения. . Поэтому об угловой скорости можно говорить, учитывая не только величину, но также и направление. (Что касается скоростей, включаемых в поступательное движение, то о них можно говорить как о «линейных скоростях», так как движение тут происходит скорее по линии, чем по углу.)

Физики используют другую единицу измерения вращательной скорости — радиан. Это угол, который отображает на окружности дугу, равную по длине радиусу круга. Длина окружности равна π, умноженному на диаметр окружности [26] Греческая буква π используется, чтобы представить отношение длины окружности (с) круга к его диаметру (d); другими словами, c/d = π). И хотя каждый круг может иметь различные значения с и d, отношение этих двух величин — c/d — всегда одно и то же для всех кругов. Поэтому π — константа, ее приблизительное значение равно 3.14159. , то есть умножить на радиус круга. Поэтому длина окружности равна 2πr , умноженным на длину дуги, обозначенной одним радианом. Один полный оборот заключает в себя прохождение одной полной длины окружности, то есть один оборот равняется радианам, или 360°. Из этого следует, что один радиан равняется 360°/2π, или, так как к равняется 3,14159, один радиан примерно равен 57,3° (1 рад = 57,3°).

Угловая скорость часто обозначается греческой буквой ω («омега»), так как это — греческий эквивалент латинской буквы v, обычно используемой для обозначения линейной скорости.

Для любой данной точки на вращающемся теле угловая скорость может быть приведена к линейной скорости. Линейная скорость зависит не только от угловой скорости, но также и от расстояния, на котором находится рассматриваемая точка от центра вращения (r). Если для той же самой угловой скорости удвоить расстояние от точки до центра вращения, то линейная скорость точки также удвоится. В таком случае можно сказать, что:

v = rω. (Уравнение 6.4)

Это уравнение абсолютно корректно, когда ω измеряется в радианах в единицу времени. Например, если угловая скорость — один радиан в секунду, то за одну секунду данная точка, расположенная на окружности колеса, проходит дугу, равную ее расстоянию от центра, и v = r. Εсли ω равняется 2 радианам в секунду, то v = 2r и так далее.

а Величина радиана б Угловая скорость Если бы мы измеряли ω в оборотах в - фото 9
а) Величина радиана; б) Угловая скорость

Если бы мы измеряли ω в оборотах в единицу времени, то уравнение 6.4 можно было бы прочитать как (v = 2πrω), а если бы мы измеряли ее в градусах в единицу времени, то это же уравнение можно было бы прочитать как v = rω/57,3. Это — пример того, как единица измерения, которая на первый взгляд может показаться имеющей странную и неудобную размерность, оказывается весьма полезной, потому что она позволяет выразить отношения между величинами с максимальной простотой.

Крутящий момент

Для того чтобы привести тело, находящееся в состоянии покоя, в поступательное движение, требуется приложить к нему силу. Но при некоторых условиях сила может вместо этого вызвать вращательное движение тела. Предположим, например, вы прибили гвоздем один конец доски к деревянному основанию. Если вы теперь толкнете доску, то она не будет двигаться в поступательной манере движения, так как один конец ее закреплен. Вместо этого доска начнет совершать вращательное движение вокруг зафиксированного конца.

Сила, которая вызывает такое вращательное движение, называется крутящим моментом («torque» — от латинского слова, означающего «вращать»). Если мы продолжим использовать греческие буквы для обозначения элементов вращательного движения, мы можем обозначить крутящий момент греческой буквой τ («tau» — «тау»), которая является эквивалентом латинской буквы «t» (от латинского «torque» — очевидно).

Данная сила не всегда вызывает тот же самый крутящий момент. В случае упомянутой доски величина крутящего момента зависит от расстояния между точкой, к которой приложена сила, и фиксированной точкой. Сила, приложенная непосредственно к фиксированной точке, не будет вызывать крутящий момент. По мере отступа от этой точки данная сила произведет все более быстрое вращение и поэтому вызовет все больший и больший крутящий момент. Фактически крутящий момент равен силе (f), умноженной на расстояние (r):

τ = fr. (Уравнение 6.5)

В прошлом о крутящем моменте говорили как о «моменте силы», но эта фраза теперь вышла из употребления. Крутящий момент может быть вызван не только в случае, когда какая-то часть тела зафиксирована в пространстве, но даже тогда, когда все тело способно свободно перемещаться.

Рассмотрим тело, обладающее массой, но состоящее из одной-единственной точки. Такое тело может подвергнуться только поступательному движению. Вращающееся тело, в конце концов, крутится относительно некоторой точки (или линии); если эта точка — все, что существует, и нет ничего еще, что могло бы вращаться, возможно только линейное движение. Зато к таким точечным массам наиболее просто применить законы движения.

Однако в реальной Вселенной не существует никаких точечных масс. Все реальные тела, обладающие массой, могут расширяться. Однако можно показать, что в некоторых случаях такие реальные тела ведут себя так, как будто вся их масса сконцентрирована в какой-то одной точке. Точка, в которой эта кажущаяся концентрация может быть найдена, называется «центром масс» тела. Если тело симметрично по форме и однородно по плотности или имеет плотность, которая изменяется симметричным образом, центр массы совпадает с геометрическим центром тела. Например, Земля, по существу, сферическое тело, но в то же время оно неравномерно плотно, плотность Земли — наибольшая в центре, и эта плотность уменьшается одинаково во всех направлениях, по мере приближения к поверхности. Центр масс Земли поэтому совпадает с ее геометрическим центром, и именно к этому центру и направлена сила тяжести.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Айзек Азимов читать все книги автора по порядку

Айзек Азимов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Популярная физика. От архимедова рычага до квантовой механики отзывы


Отзывы читателей о книге Популярная физика. От архимедова рычага до квантовой механики, автор: Айзек Азимов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x