Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Тут можно читать онлайн Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Центрполиграф, год 2006. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Популярная физика. От архимедова рычага до квантовой механики
  • Автор:
  • Жанр:
  • Издательство:
    Центрполиграф
  • Год:
    2006
  • Город:
    М.
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание

Популярная физика. От архимедова рычага до квантовой механики - описание и краткое содержание, автор Айзек Азимов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)

Популярная физика. От архимедова рычага до квантовой механики - читать книгу онлайн бесплатно, автор Айзек Азимов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

И снова момент инерции (средняя величина mr 3) может быть изменен без того, чтобы изменить полную массу, а это производит любопытные эффекты.

Предположим, например, что вы стоите на абсолютно гладком поворотном столе, который был приведен во вращение; вы держите ваши руки раздвинутыми на ширину плеч, в каждой руке у вас — тяжелый груз.

Ось вращения проходит через центр вашего тела от головы к пальцам ног, а масса ваших раскинутых рук находится дальше от этой оси, чем вся остальная часть тела. Грузы, которые вы держите в обеих руках, находятся еще дальше. Следовательно, ваши руки и грузы, которые они держат, оказывающие очень большое влияние на значение r, вносят большую составляющую в значение mr 2 и создают момент инерции, намного больше того, которым вы обычно обладаете.

Предположим затем, что при вращении вы опускаете руки. Масса ваших рук и грузов, которые они держат, теперь значительно ближе к оси вращения, и, несмотря на то что полная масса не изменилась, момент инерции очень уменьшился. Если момент инерции (I) уменьшился, то угловая скорость со должна быть соответственно увеличена, чтобы угловое количество движения (Iω) оставалось постоянным. (Другими словами, если вам нужно, чтобы произведение двух чисел всегда равнялось 24, а затем изменяете множитель с 8 на 4, то вы должны изменить второй множитель с 3 на 6, чтобы произведение продолжало равняться 24: 24 = 8∙3; 24 = 6∙4; 24 = 4∙6; 24 = 3∙8; 24 = 2∙12…)

Так и получается. Поворотный стол внезапно увеличивает скорость своего вращения, в то время как вы опускаете руки, и также скорость вращения резко уменьшается, когда вы снова поднимаете руки. Фигурист использует этот же принцип при выступлениях на льду: сначала он вращается достаточно быстро с руками раздвинутыми в стороны, а затем руки опускает вниз или вытягивает вертикально вверх и осуществляет стремительное вращение на носке конька.

Сохранение углового количества движения Тело которое обладает только угловым - фото 11
Сохранение углового количества движения

Тело, которое обладает только угловым количеством движения, не может передать неуравновешенное поступательное количество движения к другому телу, поскольку передавать ему нечего. Безусловно, вращающиеся колеса автомобиля дают поступательное количество движения. Но в этом случае, однако, равное по величине, но противоположное по знаку количество движения дает земля. Эти два поступательных импульса складываются, чтобы в результате дать нуль. Любой автомобилист, который когда-либо пробовал двигаться по льду, подтвердит этот факт. Как только трение уменьшилось до величины, когда оно очень малое или никакое количество движения не может быть передано земле, автомобиль получит малое или никакое количество движения, и колеса будут прокручиваться вхолостую.

Глава 7.

РАБОТА И ЭНЕРГИЯ

Рычаг

Законы сохранения нравятся ученым. Во-первых, закон сохранения устанавливает пределы возможностей. При рассмотрении нового явления очень удобно исключить все объяснения, которые повлекли бы нарушение одного из законов сохранения (по крайней мере, пока не придут к выводу, что ничего, за исключением такого нарушения, не может объяснить явление). С оставшимися возможностями тогда гораздо легче работать.

В дополнение ко всему имеется интуитивное чувство, что ничто не возникает из ничего. Поэтому кажется надлежащим и правильным предположить, что Вселенная обладает определенным ограниченным количеством тех или других свойств материи (типа количества движения) и что в то время, как это количество распределено различными способами среди различных тел Вселенной, общая сумма их не может быть ни увеличена, ни уменьшена.

Следовательно, если мы наблюдаем ситуацию, в которой кажется, что в некотором отношении что-то получено из ничего, сразу имеет смысл начать поиск некоторого фактора ситуации, который уменьшается, компенсируя это увеличение. Может оказаться, что это — два фактора, объединенные некоторым способом, которые образуют константу. В случае углового количества движения, например, момент инерции может изменяться по желанию и может, по-видимому, появляться из ниоткуда или исчезать в никуда.

Угловая скорость, однако, всегда сразу изменяется в противоположную сторону, а произведение момента инерции и угловой скорости является константой.

Другой случай такого плана — результат рассмотрения «рычага». Рычаг — это любой твердый объект, способный к вращению вокруг некоторой фиксированной точки, называемой «точкой опоры» рычага. В качестве практического примера можно рассмотреть деревянную доску, лежащую на «козлах»; доска является рычагом, «козлы» — точкой опоры.

Если точка опоры находится точно под центром тяжести рычага, то рычаг останется сбалансированным, то есть не наклонится ни в ту ни в другую сторону. Поскольку рычаг, как и. любой другой объект, ведет себя так, как будто весь его вес сконцентрирован в центре тяжести, он может тогда удержаться целиком на узком крае точки опоры. Если рычаг обладает однородными геометрическими характеристиками и плотностью, центр тяжести его находится в геометрическом центре, и именно туда следует поместить точку опоры, как в известной детской игре — в качелях.

Если к любой точке на рычаге приложить направленную вниз силу, то эта сила, умноженная на расстояние до точки опоры, даст нам крутящий момент и рычаг начнет вращательное движение в направлении крутящего момента.

Предположим, однако, что к рычагу в тоже самое время, во с другой стороны точки опоры прикладывают другую направленную вниз силу. Если вторая сила равна первой и приложена на таком же расстоянии от точки опоры, то полученные два крутящих момента равны по величине, но не по направлению. Крутящий момент на одной стороне точки опоры имеет тенденцию вызывать вращение по часовой стрелке, а тот, что с другой стороны, имеет тенденцию вызывать вращение против часовой стрелки. Если обозначить один крутящий момент как τ, то другой должен быть равен -τ. Эти два крутящих момента складываются, сумма их равна нулю, и рычаг не двигается. Он остается в положении равновесия.

(С другой стороны, если сила приложена вниз на одной стороне точки опоры и вверх на другой, то оба производят движение в том же самом направлении: оба по часовой стрелке или оба против часовой стрелки. Крутящие моменты в этом случае будут одного и того же знака, и сумма их будет составлять 2τ или –2τ. Такой удвоенный крутящий момент называется «парой», и, естественно, пара моментов может более легко переместить рычаг относительно точки опоры. Такую пару мы используем, когда заводим будильник или открываем штопором бутылку.)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Айзек Азимов читать все книги автора по порядку

Айзек Азимов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Популярная физика. От архимедова рычага до квантовой механики отзывы


Отзывы читателей о книге Популярная физика. От архимедова рычага до квантовой механики, автор: Айзек Азимов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x