Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики
- Название:Популярная физика. От архимедова рычага до квантовой механики
- Автор:
- Жанр:
- Издательство:Центрполиграф
- Год:2006
- Город:М.
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание
Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Единственная сила, которая, кажется, не является результатом прямого воздействия одного тела на другое, — сила тяжести. Тяготение, по-видимому, воздействует силой на расстоянии и вызывает движение без вступления в прямой контакт с телами. Такое «действие на расстоянии» интересовало как Ньютона, так и многих физиков после него. Были разработаны различные варианты оправдания ее, и сила тяжести заняла свое почетное место в ряду механических сил. Таким образом, изучение движений небесных тел, которые происходят и управляются силами тяготения, называется «астрономической механикой».
Умножение силы
Механизм не только передает силу, часто он может использоваться, чтобы умножить эту силу, как мы видим на примере описанного выше рычага. И все же к этому умножению силы нужно относиться с подозрением. Как один ньютон силы может делать работу десяти ньютонов только посредством передачи ее через твердый брусок? Как я указал в начале этой главы, рассчитывать на такое великодушие со стороны Вселенной слишком трудно. Что-то еще должно быть потеряно, чтобы восполнить его.
Если мы рассмотрим рычаг, поднимающий вес в 250 килограммов при помощи эквивалента силы, равного только 25 килограммам веса, то, как видно из диаграммы, мы имеем два подобных треугольника. Стороны и высота одного пропорциональны соответствующим сторонам и высоте другого, поскольку расстояние от точки приложения веса до точки опоры пропорционально расстоянию от точки приложения силы до точки опоры.
Другими словами, если мы прикладываем силу в точке, в десять раз так же отдаленной от точки опоры, как вес, а затем поднимаем вес на данное расстояние, мы должны опустить рычаг вниз на расстояние в десять раз большее. Вот он — ответ! При подъеме веса посредством рычага мы можем регулировать расстояния от точки опоры таким образом, чтобы использовать только часть силы, которая потребовалась бы, если бы мы поднимали груз без рычага, но тогда мы должны применить эту часть силы на соответственно большем расстоянии. Произведение силы на расстояние остается тем же самым с обоих концов рычага.

Это оказывается истинным для любого механизма, который, как нам кажется, умножает силу. Меньшая сила исполняет задачу, которая без механизма потребовала бы большей силы, но всегда за счет необходимости приложения этой силы на соответственно большем расстоянии. Произведение силы на перемещение, на котором действует сила, называется «работой» и обычно обозначается w. Таким образом:
В некотором смысле работа — достаточно неудачный термин, чтобы использовать его в данной связи. Любой согласится, что подъем веса на какое-то расстояние — работа, но в повседневном использовании смысл данного термина не ограничен одним этим значением. В повседневной речи работа — термин, который применяется к любой форме производства. Если я спокойно сижу в своем кресле и в течение получаса думаю о том, что же дальше написать в этой книге, то такое действие может показаться мне тяжелой работой, но данный процесс не включает в себя какого-либо действия на каком-либо расстоянии, а значит, с точки зрения физика, не является работой. Опять же стоять на одном месте и держать в руке тяжелый чемодан — кажется тяжелой работой, но так как чемодан не двигается, то при этом не совершается никакой работы. Если идете и несете чемодан, то опять же при этом не производится никакой работы, поскольку хотя чемодан и перемещается (горизонтально), но перемещается не в направлении действия силы (вертикально), которая предохраняет его от падения.
Тем не менее термин «работа», означающий силу, умноженную на расстояние, на которое тело перемещается под ее действием, установлен повсеместно и не подлежит переделке.
Единицы измерения работы — это единицы измерения силы, умноженные на единицы измерения расстояния. В системе МКС единицей измерения работы является произведение ньютона на метр; это произведение было названо «джоулем» в честь английского физика, о котором я буду иметь случай упомянуть позже. В системе СГС единица работы получается равной дине, умноженной на сантиметр; эта единица называется «эрг» (от греческого слова, означающего «работа»). Так как ньютон равен 100 000 дин, а метр равен 100 сантиметрам, то ньютон-метр равен 100 000 раз по 100 дин-сантиметров. Другими словами, один джоуль равен 10 000 000 эргов.
Так как сила — векторная величина, может показаться, что работа, которая является произведением силы на расстояние, также должна быть вектором; это означало бы, что можно говорить о данном количестве работы, сделанной при движении направо, и том же количестве работы, сделанной при движении налево, как о равных и противоположных по знаку. Однако это не так. Для того чтобы понять — почему, рассмотрим единицы измерения работы еще раз.
Ньютон определяется как килограммометр в секунду за секунду, или кг-м/с 2. Если джоуль равен ньютон-метру, то тогда он равен килограмм-метр-метру в секунду за секунду, или кг-м 2/с 2. Это последнее выражение может быть записано как кг-(м/с) 2. Но м/с (метры в секунду) — единица скорости, а это означает, что единица работы равна единице массы, умноженной на квадрат единицы скорости, или w = mv 2.
Истинно, что скорость является векторной величиной, поэтому можно было бы говорить о –v и +v, но единица работы включает в себя квадрат скорости. Как мы знаем из элементарной алгебры, квадрат положительного числа (+v) x (+v) и квадрат отрицательного числа (– v)∙(−v) положительны (+v 2).
Следовательно, квадрат скорости не показывает никаких различий в знаках, и единица, которая включает в себя квадрат скорости, — не векторная, а скалярная величина (если, конечно, она не содержит других (иных, чем скорость) векторных единиц измерения).
Таким образом, мы пришли к выводу, что работа — скалярная величина.
Возвращаясь к рычагу, мы видим, что работа, потраченная на подъем валуна рычагом, та же самая, что потребовалась бы на подъем валуна без рычага. В данном случае отличается лишь распределение работы между силой и расстоянием. То же самое истинно и в том случае, когда в качестве механизма мы используем наклонную плоскость.
Допустим, что нам необходимо поднять 50-килограммовую бочку на высоту два метра на задний борт грузовика. Так как килограмм веса прикладывает направленную вниз силу, равную 9,8 ньютона, то, чтобы поднять бочку, потребуется сила общей величиной 490 ньютонов. Приложив силу, равную 490 ньютонов, на расстояние в два метра в направлении силы, мы выполним 980 джоулей работы.
Читать дальшеИнтервал:
Закладка: