Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики
- Название:Популярная физика. От архимедова рычага до квантовой механики
- Автор:
- Жанр:
- Издательство:Центрполиграф
- Год:2006
- Город:М.
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание
Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Это может быть достигнуто путем перехода от вибрации к другой форме периодических колебаний — круговому движению. Объект может быть изображен как перемещающийся по кругу при постоянном внутреннем ускорении и, следовательно, как перемещение по окружности круга с постоянной скоростью.
Если рассматриваемый круг имеет радиус длины a, тогда длина его окружности равна 2πa. Если точка перемещается со скоростью v, то время t, которое требуется, чтобы сделать полное обращение (период кругового движения), равно:
Теперь если мы представим себе круг, бросающий тень на стену, то тень его боковой поверхности будет прямой линией. Точка, перемещающаяся по кругу, на тени будет казаться перемещающейся вперед и назад по прямой линии. По мере движения точки по окружности точка на тени будет совершать возвратно-поступательное движение по прямой линии. Период колебаний по окружности (уравнение 8.1) будет также равен периоду вибрации тени.
На любом из крайних положений линии-тени точка будет казаться перемещающейся очень медленно, потому что ее движение по кругу отражается на линию-тень под более или менее прямым углом, что дает очень немного поперечного движения. (А только поперечное движение обнаружит себя на тени.) По мере передвижения точки в промежуточные части круга его движение становится все более поперечным и все менее поступательным по отношению к линии, так что точка на тени кажется двигающейся все быстрее и быстрее, чем дальше она находится от крайнего положения. Таким образом, когда точка находится в самом центре, точка на окружности перемещается параллельно линии и все ее движение — поперечно. В центре теневой линии поэтому точка кажется перемещающейся самым быстрым образом. Движение точки по линии-тени напоминает движения тела при простых гармонических колебаниях, и действительно, данное движение является таковым. Следовательно, формула 8.1 представляет собой период (t) простых гармонических колебаний.
Уравнение 8.1 все еще представляет трудность для анализа, так как включает в себя скорость v, и, в то время как точка перемещается по окружности с постоянной скоростью, она перемещается по линии-тени с постоянно меняющейся скоростью. Поэтому мы должны найти, если возможно, что-то, что займет место v.

В любых простых гармонических колебаниях максимальная скорость проходит через среднюю точку между двумя экстремумами. В этот момент тело, испытывающее такое движение, находится в положении равновесия, где оно и осталось бы, если бы находилось в состоянии покоя. В этой точке тело не обладает никакой потенциальной энергией, а обладает только энергией движения, или, как ее иначе называют, «кинетической энергией». Поскольку тело перемещается дальше от своего положения равновесия, оно теряет скорость и поэтому теряет кинетическую энергию. Однако оно перемещается в положение, в котором кинетическая энергия равна нулю, зато получает энергию положения, или, как ее иначе называют, «потенциальную энергию». В экстремальном положении тело останавливается на мгновение, и вся его энергия находится в форме потенциальной энергии. Тело, участвующее в простых гармонических колебаниях, демонстрирует периодический переход кинетической энергии в потенциальную энергию и обратно и (не принимая во внимание эффект демпфирования трением и сопротивление воздуха) являет собой превосходный пример сохранения механической энергии.
Как я уже сказал ранее, в соответствии с законом Гука, сила упругости, приложенная к телу, испытывающему простые гармонические колебания, пропорциональна его смещению от положения равновесия. Она равна F = kd, где F — сила упругости, а d — смещение. Сила упругости — наименьшая в положении равновесия (которое находится в центре нашей прямолинейной тени). В этой точке не имеется никакого смещения и сила упругости равна нулю. Максимальное значение силы упругости достигается в точке максимального смещения, которая, конечно, расположена на краю прямолинейной тени. Это крайнее положение равно расстоянию a (радиусу окружности, которая отбрасывает прямолинейную тень) от центра или положения равновесия, следовательно, мы можем сказать, что сила упругости в ее максимальном значении равна ka.
В то время как тело перемещается из положения равновесия до крайнего положения, оно перемещается против силы, которая начинается в 0 и плавно увеличивается до ka, а средняя сила, против которой действует перемещающееся тело, поэтому равна ka плюс 0, разделенные на два, или (ka/2).
Работа, приложенная к телу, которая необходима, чтобы вывести его из положения равновесия и переместить в данную точку, равна силе, умноженной на расстояние, на котором приложена сила. Это означает ka/2 умножить на a, или ka 2/2. В крайней точке вся эта работа будет запасена в виде потенциальной энергии и поэтому максимальная потенциальная энергия тела, перемещающегося на условиях простых гармонических колебаний, равна ka 2/2.
В то же самое время кинетическая энергия тела достигает своего максимального значения в средней точке, там, где вся потенциальная энергия была преобразована в движение и где скорость достигает своего максимума. Кинетическая энергия тогда равна mv 2/2, где m — масса тела, a v его максимальная скорость.
Так как потенциальная энергия и кинетическая энергия постоянно конвертируются между собой в течение всего времени существования простых гармонических колебаний без существенных потерь, максимальная величина потенциальной энергии и максимальная величина кинетической энергии должны быть равны. Таким образом:
Мы легко можем преобразовать это уравнение:
Заменив (m/k) на (a/v) в уравнении 8.1, мы получаем:
Это совершенно удивительный результат, поскольку выясняется, что период простых гармонических колебаний зависит только от массы перемещающегося тела и пропорционален константе между нагрузкой и напряжением. Все эти данные могут легко быть определены для данного специфического тела, и, таким образом, мы можем сразу рассчитать период колебаний.
Следует отметить, что период колебаний не зависит ни от скорости тела, перемещающегося с простыми гармоническими колебаниями, ни от расстояния, на которое тело перемещено из среднего положения, так как и v и а исчезли из уравнения 8.4. Это означает, что, если струна оттянута на некоторое расстояние от ее среднего положения, она достигнет некоторой максимальной скорости в средней точке ее колебаний и будет иметь некоторый период вибрации. Если ее оттянуть на большее или меньшее расстояние, она получит большую или соответственно меньшую максимальную скорость; в любом случае изменения в скорости будет только достаточно, чтобы восполнить изменение в расстоянии смещения, так что период колебаний останется тем же самым.
Читать дальшеИнтервал:
Закладка: