Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики
- Название:Популярная физика. От архимедова рычага до квантовой механики
- Автор:
- Жанр:
- Издательство:Центрполиграф
- Год:2006
- Город:М.
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики краткое содержание
Популярная физика. От архимедова рычага до квантовой механики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Теперь рассмотрим силу упругости. Она, конечно, зависит от силы тяжести. Полное значение натяжения нити, вызванное силой тяжести, направленной вниз, соответственно должно быть равно mg, где m — масса отвеса, a g — ускорение свободного падения [32] На самом деле струна (нить) также имеет массу, какой бы легкой она ни была. Таким образом, мы имеем массу, распределенную по линии маятника от отвеса до центра закрепления. В каждой данной точке струна обладает некоторой массой, которая зависит от разницы в длине струны. Это также истинно и для самого отвеса, различные части которого имеют различное расстояние от точки закрепления. В идеальном варианте маятник должен состоять из массивного отвеса с нулевым объемом, приложенным невесомой струной к центру закрепления. Такое устройство называется «идеальным или простым маятником» и, естественно, в реальном мире не существует. Однако, используя тяжелый отвес и легкую струну, можно сделать реальный маятник, который по своим свойствам будет приближен к идеальному маятнику. (У нас это называется «математическим» и «физическим» маятниками соответственно.) (Примеч. пер.)
. Однако отвес не двигается точно вниз, он перемещается по дуге. Это перемещение складывается из воображаемых «скатываний» по наклонной плоскости, которая изменяет свой угол наклона в каждой из точек окружности.
Эта ситуация подобна той, с которой мы столкнулись, когда рассматривали наклонные плоскости. Вообразите отвес маятника в некоторой точке его движения, когда поддерживающая его струна составляет с вертикальной линией угол, равный θ. В этой точке отвес как будто скатывается по наклонной плоскости, составленной по тангенсу к дуге колебания в этой точке. Мы могли бы изобразить такую наклонную плоскость, как часть прямоугольного треугольника. Наклонная плоскость имела бы длину L и высоту H от горизонтальной линии. Угол, который наклонная плоскость создает с горизонтальной линией, как это можно видеть из обычной геометрии, равен углу сдвига, то есть также равен θ.
Как мы узнали, максимальная сила тяготения должна быть умножена на отношение H к L, так что сила упругости (F) будет равна mg(H/L). Отношение H к L представляет собой синус [33] Отношение одной стороны прямоугольного треугольника к другой изменяется в соответствии с величиной углов прямоугольного треугольника. Для некоторого заданного угла эти отношения установлены, и каждому дано собственное название. Так как такие отношения изучаются в той части математики, которая называется «тригонометрией» (это слово по-гречески означает «измерение треугольников»), то такие отношения называются «тригонометрическими функциями». Синус представляет собой пример такой тригонометрической функции. Пока мы не будем подробно вникать в сущность тригонометрических функций. Достаточно будет сказать, что мы можем легко получить таблицы, которые дадут нам значение синуса или любой другой тригонометрической функции, составленных для углов различной величины.
угла θ и обозначается «sin θ». Поэтому мы можем выразить силу упругости как:
Таким образом, отношение силы упругости к смещению в случае качающегося маятника равно (объединяем уравнения 8.5 и 8.6):
Теперь возникает вопрос: является ли это отношение константой, поскольку если это так, то качающийся маятник должен рассматриваться как пример простых гармонических колебаний. Масса (m) отвеса и длина струны ( l ) не изменяются в процессе колебания маятника, значение g также постоянно для любой данной точки поверхности Земли, так что величина mg/l также может рассматриваться в качестве константы. Остается только определить, является ли величина (sin θ)/θ также константой. Если это так, то задача решена.

К сожалению, данное отношение не является константой. Как мы можем легко определить, синус 30° равен ½, в то время как синус 90° равен 1. Другими словами: в то время как синус угла только удвоился, сам угол стал больше в три раза. Это означает, что (sin θ)/θ не является константой, что сила упругости нити маятника не является величиной, прямо пропорциональной смешению, и что покачивание маятника не является примером простых гармонических колебаний.
Однако если отношение (sin θ)/θ и не является константой, то оно почти постоянно для маленьких углов (10° или меньше). Поэтому, если маятник качается вперед и назад по небольшой дуге, это движение практически является примером простых гармонических колебаний.
На практике для маленьких углов (sin θ)/θ — не просто константа, это отношение равно единице. По этой причине (не забываем, что мы имеем дело с маятниками, качающимися только по маленьким дугам) мы можем устранить выражение (sin θ)/θ в уравнении 8.7 и написать:
в котором символ ≈ означает «приблизительно равно».
(Вы можете задать вопрос: почему же мы желаем воспользоваться приблизительным равенством, ведь наука должна оперировать только точными отношениями? Ответ таков: иногда следует удовлетвориться аппроксимацией (т. е. максимально приближенным значением) — в этом случае мы можем обращаться с маятником как с примером простых гармонических колебаний и производить некоторые другие вычисления, весьма простые, пусть даже и не совсем точные.)
Например, как мы уже определили, период (t) простых гармонических колебаний объекта равен: 2πm/k (другая форма той же записи — см. уравнение 8.4).
Символ к представляет собой отношение силы упругости к смещению, для которого в случае маятника мы нашли значение в уравнении 8.8; там оно установлено приблизительно равным mg/l При объединении уравнений 8.4 и 8.8 (и при сохранении символа приблизительного равенства) мы можем заявить, что период умеренно качающегося маятника равен:

Как вы видите, период умеренно качающегося маятника не зависит от массы отвеса, а зависит (по крайней мере, в весьма хорошем приближении) от квадратного корня из длины струны, что, собственно, в далеком XVI столетии и определил Галилео экспериментальным путем.
Присутствие в уравнении величины g — ускорения, вызванного силой тяжести, — имеет очень важное значение. Если преобразовать уравнение 8.9 так, чтобы выразить значение g, то мы получим:
Читать дальшеИнтервал:
Закладка: