Эрик Роджерс - Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия
- Название:Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия
- Автор:
- Жанр:
- Издательство:Мир
- Год:1970
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эрик Роджерс - Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия краткое содержание
Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Спустя два столетия после того, как Ньютон сформулировал свои законы, начали возникать трудности и сомнения. Ньютон принимал «относительность Галилея». В созданной им теории не имеет значения, движется ли наблюдатель с постоянной скоростью или находится в состоянии покоя. Однако Ньютон считал, что абсолютную систему отсчета можно обнаружить по эффекту вращения. (Если бы Земля оказалась в состоянии покоя, а небесные тела вращались вокруг нее, разве могли бы мы наблюдать кривизну земной поверхности, изменение силы тяжести, поворот плоскости качания маятника Фуко?) Ньютон писал об абсолютном движении: под действием сил возникают абсолютные ускорения, а не ускорения относительно какой-то движущейся системы координат. Но где находится неподвижная, фиксированная система отсчета? Земля, Солнце, звезды — все движется. Существует ли реальная фиксированная система отсчета? Если мы не можем указать такой системы, то стоит ли включать ее в наше рассмотрение механики? Вот из таких сомнений и возникла теория относительности [92] Специальная теория относительности Эйнштейна обходится без фиксированной в пространстве системы отсчета. Общая теория относительности еще использует систему отсчета, связанную с неподвижными звездами, например для предсказания медленного вращения орбиты Меркурия.
. На первых порах, изучая теоретическую механику, разумно забыть об этих сомнениях и принять законы Ньютона как простые, надежные рабочие правила. Используя их для решения задач, помните, что это — блестяще сформулированный итог согласованных определений и экспериментальных наблюдений. Это не застывшие законы, которые нужно цитировать, чтобы все стало на свои места! Они указывают нам, как нужно обрабатывать результаты проведенных опытов и как предсказывать, что должно случиться в будущих экспериментах. В то же время они знакомят нас с такими полезными понятиями, как масса и количество движения.
Ньютон и движение планет
Ньютон сформулировал свои законы так, чтобы иметь возможность пользоваться ими. Обратившись к проблемам астрономии, он сразу же ответил на вопрос, который не могли решить греки и который поставил в тупик Кеплера и даже Галилея: «Что удерживает Луну и планеты при их движении по орбитам?» Предполагалось все — хрустальные сферы, естественное круговое движение, вращающиеся рычаги и магнитные флюиды, вихри. Ньютон понимал, что такие объяснения содержат детали, в которых нет необходимости. Сила не нужна для движения планеты (первый закон).
Предоставленные сами себе, они будут вечно двигаться прямолинейно. Сила необходима, чтобы планеты двигались по криволинейной орбите, ибо если нет силы, то движение будет прямолинейным.
Какой должна быть величина внешней силы? Откуда она может взяться? Это были новые вопросы, поставленные Ньютоном.
Если к этому движению применим второй закон, то необходима внешняя сила, равная произведению массы на ускорение . Но чему равно ускорение при движении по орбите? Ньютон исследовал равномерное движение по круговой орбите. Орбиты Луны и большинства планет близки к окружности. Он пришел к тому же результату, что и другие ученые, решавшие эту задачу: ускорение, направленное к центру орбиты по радиусу, равно v 2/ R , где v — скорость на орбите, a R — радиус орбиты. (См. главу 21 , где вводится это ускорение. Для этого используются геометрические представления, но масса и сила не фигурируют. Ньютон получил свой результат необычным путем, рассматривая движущееся тело как снаряд и каждый элемент длины окружности как участок вблизи вершины параболы, по которому движется снаряд.) Тогда сила должна быть равна Mv 2/ R и направлена по радиусу к центру орбиты. Так, Луна, движущаяся по круговой орбите, всегда испытывает ускорение в сторону Земли, но никогда не приближается к ней. Это можно представлять себе как падение с касательной к окружности на окружность, причем орбита образуется в результате того, что тело начинает «падать» и достигает в нужный момент следующего участка орбиты, не приближаясь, однако, к ее центру. Если это вам покажется странным, вспомните, что любой снаряд, летящий по параболе, в ее вершине испытывает, ускорение g , однако в этой точке снаряд не опускается и не поднимается, таким образом не приближаясь к Земле. Существуют моменты времени, когда ускорение имеется, но скорость в его направлении равна нулю. Можно сказать, что лунная орбита состоит из последовательных «вершин» парабол.
И вот, наконец, Ньютону удалось объяснить, откуда берется эта сила. Он предположил, что силы, заставляющие падать тела на поверхность Земли, могут также притягивать Луну и служат причиной ее движения по орбите. Существует легенда о том, что Ньютон обдумывал эту проблему, сидя в саду, и яблоко, упавшее ему на голову, подсказало решение. Такое притяжение мы называем «гравитацией» — словом, которое означает тяжесть или подразумевает какую-то связь с весом. Во многих случаях более подходит обычное слово вес.
Фиг. 148. Земное притяжение.
Ньютон предположил, что именно вес Луны удерживает ее на орбите. Если бы Луна находилась очень близко от поверхности Земли, то ее вес обусловливал бы ее ускорение g , равное примерно 9,81 м/сек 2, т. е. такое же, как и у яблока, если не считать, что объем Луны больше, и это, конечно, не разрешает поставить подобный эксперимент. Будет ли Луна иметь такое же ускорение на своей орбите? Будет лила орбите Луны v 2/ R ~ 9,81 м/сек 2?Луна совершает полный оборот по своей орбите относительно неподвижных звезд за 27,3 дня. Ньютон знал, что радиус лунной орбиты R равен 60 радиусам земного шара, т. е. 60 R . Ему был также приближенно известен радиус Земли, так что он мог вычислить скорость v , разделив длину окружности лунной орбиты 2π R на время Т , равное одному месяцу, а отсюда вычислялось ускорение v 2/ R . В ответе получалась величина, значительно меньшая 9,81 м/сек 2. Если «гравитация» меняется с расстоянием, g может быть значительно меньше на лунной орбите. Ньютон нашел простое правило убывания силы притяжения — закон обратной пропорциональности квадрату расстояния. По закону обратных квадратов убывают с расстоянием сила света, интенсивность радиоволн, звука, а также сила, создаваемая магнитным полюсом или электрическим зарядом.
Закон обратных квадратов справедлив во всех случаях прямолинейного распространения из источника при отсутствии поглощения [93] Предположим, что небольшой распылитель испускает струю мелких капель масла. Эти капли летят из ствола по прямым линиям, образуя широкий конус. Если экран (кусок хлеба, скажем) полностью перекрывает конус на расстоянии 1 м от ствола, то на расстоянии 2 м конус можно перекрыть экраном, площадь которого будет в 4 раза больше, а на расстоянии в 3 м — в 9 раз больше первого, поэтому толщина масла на экранах будет в пропорция 1:1/4:1/9… Это — «закон обратных квадратов намазывания маслом». Фиг. 149. Закон, обратных квадратов.
. Правильная мысль пришла в голову Ньютону, когда он пытался получить третий закон Кеплера! Он попробовал применить зависимость, обратно пропорциональную квадрату расстояния. Луна находится на расстоянии шестидесяти земных радиусов, а яблоко — на расстоянии лишь одного радиуса от центра Земли, поэтому притяжение в области Луны уменьшается в 1/60 2раз, или в 3600 раз. Ускорение Луны уже будет не 9,81 м/сек 2, а 9,81/3600 м/сек 2. Легко подсчитать значение v 2/ R для Луны и убедиться, что оно совпадает с «предсказанной» таким способом величиной. Представьте себе тот восторг, который вы бы испытали, открыв это соответствие! Это была успешная проверка соотношений F= M∙ aи a= v 2/ Rи закона обратных квадратов для силы тяжести. Вы могли бы сделать первую проверку выдающейся теории — и великое открытие принадлежало бы вам!
Интервал:
Закладка: