Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила

Тут можно читать онлайн Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Мир, год 1969. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Физика для любознательных. Том 1. Материя. Движение. Сила
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1969
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3.67/5. Голосов: 31
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила краткое содержание

Физика для любознательных. Том 1. Материя. Движение. Сила - описание и краткое содержание, автор Эрик Роджерс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Физика для любознательных. Том 1. Материя. Движение. Сила - читать онлайн бесплатно полную версию (весь текст целиком)

Физика для любознательных. Том 1. Материя. Движение. Сила - читать книгу онлайн бесплатно, автор Эрик Роджерс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Величина ускорения

Эксперименты не просто убеждают нас в том, что ускорение постоянно, а дают его фактическое значение. Если а постоянно, то расстояние = ( 1/ 2 а )∙( время ) 2, и ( расстояние)/ ( время ) 2= 1/ а ( ускорение ).

Таким образом, в нашем случае 0,076 и т. д. представляет собой оценки величины 1/ 2 а . Отсюда получаем а = 0,152, или 2/ 13. Но указать число 2/ 13недостаточно — две тринадцатых чего?

Подобное число само по себе ничего не дает, если не сказано, в каких единицах оно выражено. Мы получим это число, разделив расстояние в метрах на ( время ) 2. Поскольку время измеряется в секундах, ответ должен быть в м/сек 2(читается: «метр на секунду в квадрате» или «метр в секунду за секунду»).

Единицы измерения ускорения

Вернемся к определению ускорения и найдем единицы, в которых оно выражается:

a= [Δ v, измеренное в единицах скорости, т. е. м/сек ]/[Δ t, измеренное в единицах времени, т. е. сек ] = УСКОРЕНИЕ, измеренное в единицах ускорения, т. е. м/сек∙сек

Таким образом, ускорение измеряют в единицах м/сек∙сек, которые мы записываем в виде м/сек∙сек, или м/сек 2.

Употребление слов «на» и «в»

Слова «на» и «в» нашли широкое употребление в науке. Мы употребляли их выше в значении «деленное, на» или «на каждый (каждую)…», т. е. в значениях, которые они имеют в обычной арифметике. Позднее мы будем говорить об ином значении этих слов, когда они используются для словесного выражения отношения или пропорции.

В арифметике мы делим 10 центов на 5 и получаем 2 цента. Или мы делим 10 овец по 5 овец и получаем 2 отары. Мы сомневаемся в возможности делить 10 овец на 5 центов — ведь речь идет, возражаем мы, о предметах разного рода. Но иногда мы делим предметы одного рода на предметы другого рода, например, если 10 центов разделить на 5 мальчиков, то у каждого мальчика окажется в кармане 2 цента. А разделив 60 центов на дюжину апельсинов, получим стоимость каждого апельсина. В науке часто производят подобные деления, и чтобы ответ был верным, он должен содержать как число, так и единицы измерения. Если жук, двигаясь с постоянной скоростью, проползает 3 да за 2 часа, то мы можем сказать: «Если разделить 3 м на 2 часа, т. е. записать 3 м/2 часа, то получим 1,5 м в час». Ответ показывает расстояние, которое жук проползает за каждый час, но это не означает, что жук передвигается обязательно в течение одного часа. Это применимо и к 1/ 4часа, и к 1/ 2часа, и к 1 1/2 часам, а возможно, и к 2 1/ 2часам.

Эта формулировка применима даже к очень коротким интервалам времени: жук может ползти с той же самой скоростью 1,5 м в час в течение нескольких секунд. Мы можем мысленно сократить интервал времени, по-прежнему считая, что жук ползет со скоростью 1,5 м в час. В пределе мы говорим, что жук обладает скоростью 1,5 м в час в некоторый определенный момент времени . Это уже новое представление, представление о скорости в некоторый момент времени. Мы не можем теперь делить расстояние на промежуток времени — деление нуля на нуль не имеет смысла; тем не менее спидометр будет показывать в какой-то момент времени скорость 1,5 м в час. Правда, настоящий жук передвигается то быстрее, то медленнее, но мы легко можем представить себе идеального жука, передвигающегося с постоянной скоростью. В таком случае единица «один метр в час» — это уже не результат деления, а самостоятельная величина, единица скорости изменения пути, и скорость 1,5 м в час — это скорость изменения пути, предельное значение , отмеченное в некоторый момент времени.

Математическое понятие предела появляется и в физике, и в математическом анализе. Чтобы постичь сущность понятия предел, посмотрим, чему равна сумма большого числа членов ряда: 1, 1/ 2, 1/ 4, 1/ 8, 1/ 16…. Сумма первых двух членов равна 1 1/2, сумма трех членов 1 3/ 4, десяти членов 1 311/ 512 и т. д. Сколько бы членов ряда мы не брали, сумма никогда не будет в точности равна 2, но можно как угодно близко подойти к 2, если взять достаточно большое число членов ряда. (Заметим, что сумма всегда меньше 2 на величину, равную как раз последнему взятому члену. Поэтому эту разность можно сделать как угодно малой.) Таким образом, мы говорим, что 2 есть предел суммы большого числа членов ряда.

Наклон касательной, о котором шла речь выше, тоже представляет собой предел, а именно предел наклона хорды, проходящей через две точки на графике.

До нынешнего века физики имели дело с большим числом непрерывно изменяющихся отношений, таких, как скорость, плотность, освещенность. Теперь же оказалось, что множество физических величин характеризуется скачкообразным изменением, подобным резким изменениям скорости настоящего жука; эти величины не удается непрерывно уменьшать до предельных значений. Для примера рассмотрим отношение ( масса )/( объем ), которое мы называем плотностью . Мы можем поделить массу большого куска алюминия на его объем или массу маленького куска алюминия на его объем и получим одинаковую плотность.

Но если мы попытаемся продолжать определять таким образом плотность, переходя ко все меньшим и меньшим количествам вещества, то, дойдя до одного-единственного атома, вынуждены будем остановиться. Какие отношения физических величин можно вычислить в пределе в математическом смысле этого слова? Какие величины не обладают «атомистической» природой? Этот вопрос заслуживает внимания, и мы вернемся к нему в самом конце нашего курса. Употребляя слова «на» или «в» или знак косой черты, который их заменяет, для обозначения понятия «деленный (деленная) на» или «на каждый (каждую)», стоит подумать, что эти слова играют определенную роль в представлении об отношении.

Единицы измерения, применяемые в науке

В обыденной жизни мы измеряем скорость в метрах в секунду или в километрах в час ; инженеры тоже часто пользуются этими единицами. Ускорение мы выражаем в м/сек на секунду , а иногда в таких менее привычных единицах, как км/час на секунду . Однако ученые во всем мире условились применять метрическую систему единиц, и мы будем пользоваться одним из вариантов этой системы, системой метр — килограмм — секунда . В этой системе (ее называют сокращенно «системой МКС») длины и расстояния измеряются в метрах, масса вещества — в килограммах, а время — в секундах. Точная длина метра определяется длиной тщательно сохраняемого бруска из тугоплавкого металла, копии которого находятся в метрологических лабораториях всего мира.

Килограмм представлен куском из тугоплавкого металла, принятого за эталон. Метр делится на 100 сантиметров (каждый сантиметр соответствует примерно ширине пальца), а килограмм делится на 1000 граммов. Хотя во многих курсах физики применяют единицы сантиметр и грамм, мы примем новую используемую сейчас систему единиц — метр и килограмм, дабы облегчить понимание таких электрических единиц, как амперы и вольты. Метр и килограмм сокращенно обозначаются м и кг.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эрик Роджерс читать все книги автора по порядку

Эрик Роджерс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Физика для любознательных. Том 1. Материя. Движение. Сила отзывы


Отзывы читателей о книге Физика для любознательных. Том 1. Материя. Движение. Сила, автор: Эрик Роджерс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x