Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила

Тут можно читать онлайн Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Мир, год 1969. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Физика для любознательных. Том 1. Материя. Движение. Сила
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1969
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3.67/5. Голосов: 31
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила краткое содержание

Физика для любознательных. Том 1. Материя. Движение. Сила - описание и краткое содержание, автор Эрик Роджерс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Физика для любознательных. Том 1. Материя. Движение. Сила - читать онлайн бесплатно полную версию (весь текст целиком)

Физика для любознательных. Том 1. Материя. Движение. Сила - читать книгу онлайн бесплатно, автор Эрик Роджерс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Мыльные пленки. Поверхностные свойства жидкостей удобно наблюдать на мыльных пузырях и пленках, которые «состоят только из поверхности и не имеют внутренности» и вес которых слишком мал, чтобы он мог противостоять поверхностным силам. На фиг. 111 схематически изображены соответствующие опыты.

Опыт 7.Мыльный пузырь на воронке сжимается, задувая пламя свечи (фиг. 111, а ).

Опыт 8.«Оконная штора». На проволочной рамке, нижний край которой подвижен, создается мыльная пленка. Ее растягивают, спуская за нить скользящую часть шторы вниз, а затем нить отпускают (фиг. 111, б ).

Опыт 9.На квадратной проволочной рамке создают мыльную пленку. На пленку кладут шелковую нить, связанную в виде небольшой петли (фиг. 114, в ). Затем пленку внутри петли разрывают.

Опыт 10.Опыт «оконная штора» повторяют с помощью рамки, имеющей подвижные стержни сверху и снизу (фиг. 111, г ). Верхний стержень удерживается небольшой пружиной. Мыльная пленка создается между двумя стержнями, после чего нижний стержень двигают с помощью нити вверх и вниз.

Опыт 11.На концах Т-образной трубки выдувают два мыльных пузыря разного размера (фиг. 111, д ). Затем конец, через который производили выдувание, закрывают, и оба пузыря остаются соединенными.

Фиг. 111. Мыльные пузыри.

Задача 2

Запишите ваши наблюдения о каждом из описанных опытов, а затем скажите, какие выводя можно сделать из них относительно мыльных пленок и их «поверхностного натяжения». ( Замечание . Плоская фигура с максимальной площадью при заданном периметре есть круг.) Предупреждение . Важное следствие из опыта 8 исключает простейшее объяснение опыта 11 .

Общие пояснения

Что говорят эти опыты о поверхностях жидкостей? Капли, образующиеся в водопроводном кране, выглядят так, как будто они заключены в резиновый мешок.

Взяв настоящую оболочку из тонкой резины, мы можем сделать большую искусственную «каплю», которая по мере того, как внутрь оболочки будет вливаться все больше воды, примет форму реальной капли; однако возрастающее натяжение резины помешает точной аналогии.

Капли дождя и лужицы жидкости на столе, по-видимому, стремятся принять круглую форму, что также наводит на мысль об оболочке, которая сжимает их и противодействует силе тяжести.

Обдумав эти наблюдения, можно сделать два вывода, расплывчатых и рискованных, но заслуживающих дальнейшей проверки.

А . Поверхности жидкостей ведут себя так, будто их удерживает эластичная оболочка, стремящаяся придать им круглую форму.

Б . «Эффект оболочки» более заметен при малых размерах (маленькие капли), чем при больших (лужи воды), но когда сила тяжести уравновешена другими силами, он проявляется и при больших размерах.

Классификация и терминология

Поверхностное натяжение . Все описанные явления называют «эффектами поверхностного натяжения» и говорят, что жидкость имеет поверхностное натяжение, подобное натяжению растянутой резиновой оболочки. Пока это просто удобное название, которое само по себе не может ничего доказать или объяснить. В лучшем случае оно стимулирует обсуждение и позволяет легко определить, о чем идет речь. В худшем случае — приводит людей к неправильной мысли о том, что на поверхности существует реальная пленка, которую можно содрать с капли, как шнурку с кролика.

Краевой угол . По своей форме лужицы жидкости на столе делятся на два типа.

1) Когда жидкость прилипает к столу и растекается, как на фиг. 112, а , говорят, что жидкость смачивает поверхность стола.

2) Когда жидкость собирается в округлую каплю вопреки действию силы тяжести, как показано на фиг. 112, б , говорят, что она не смачивает поверхности. Если стол наклонить, то такие капли будут скатываться.

Фиг 112 Краевой угол а малый угол б большой угол Эти два случая - фото 101

Фиг. 112. Краевой угол.

а— малый угол; б— большой угол.

Эти два случая различаются по углу А (угол внутри жидкости между поверхностью стола и поверхностью жидкости в месте их соприкосновения), который называют краевым углом . Тот же угол существует и на других границах раздела, например в том месте, где поверхность воды встречается со стенками стакана. Если угол А мал, жидкость смачивает твердую поверхность. Это снова только название. Выбрав этот угол и дав ему название, мы ничего не узнали и не объяснили, а лишь облегчили обсуждение [68] Вообще говоря, порой наименования бывают глупые, но некоторые удачны. Скажем, глупо искать особое название для длины стола, на которой находятся лужицы, мало толку было бы и от особого названия для ширины капли. Но оказывается, что угол А заслуживает своего наименования. Величина этого угла является свойством веществ; если вы посмотрите на семейство лужиц, подобных представленным на фиг. 110, в , то увидите, что у всех капель один и тот же угол А . .

Попытка построить теорию

Молекулы. Примем данное химиками определение молекул как мельчайших частиц вещества, из которых построены более крупные предметы, и приведем несколько рассуждений. Хотя такие предметы, как молекулы, видимо, существуют, их в обычный микроскоп не видно (впоследствии, правда, будут приведены убедительные косвенные доказательства их существования), поэтому они должны быть очень малы и многочисленны. Судя по тому, как жидкости льются, их молекулы, очевидно, легко скользят относительно друг друга. Жидкость трудно сжимается; это наводит на мысль, что молекулы в ней расположены тесно. Другие данные, с которыми вы познакомитесь позднее, позволяют думать, что молекулы жидкости постоянно находятся в быстром движении, сталкиваясь друг с другом, подобно людям в толпе, причем с повышением температуры движение это усиливается. Действительно, поведение жидкости можно имитировать с помощью стальных шариков или зерен песка, если эти большие «молекулы» заставить непрерывно вибрировать.

Молекулярные силы: притяжение и отталкивание . Рассмотрим жидкость с точки зрения такой молекулярной картины. Сразу же возникает мысль, что молекулы жидкости сопротивляются их растаскиванию в разные стороны, т, е. притягиваются друг к другу. Вода в наполовину полном кувшине не расширяется и не улетучивается в отличие от газа, который стремится заполнить весь сосуд и быстро улетучивается, или диффундирует. Если сосуд открыт, жидкость остается в сосуде и ее молекулы, по-видимому, притягивают друг друга. Пока мысль о притяжении является лишь смутной догадкой. Именно в поверхностном натяжении, как и в некоторых других явлениях, эта мысль находит основательное подтверждение. Тот факт, что жидкости сильно сопротивляются сжатию, говорит о сопротивлении молекул жидкости более тесному сближению; следовательно, они должны отталкивать друг друга. Таким же образом должны вести себя и молекулы газа при очень тесном сближении [69] При столкновении друг с другом или со стенками сосуда. Что же еще, как не отталкивание от стенок, заставляет газ давить на стенки? , и молекулы твердых тел [70] Можно провести следующую аналогию: молекулы газа соответствуют быстро двигающимся по полю футболистам, которые время от времени сталкиваются между собой; молекулы жидкости подобны людям в толпе вокруг поля: они проталкиваются к центру, чтобы увидеть игру, но остаются в пределах определенных «семейных» групп; молекулы твердых тел подобны таким же болельщикам, рассаженным на трибунах: они азартно вертятся на своих местах. . Например, молекулы указательного и большого пальца отталкиваются при сжатии — какая другая причина могла бы помешать пальцам проникнуть один в другой? Но твердые вещества тоже сопротивляются попыткам растащить их в разные стороны; молекулы этих веществ должны притягивать друг друга. Мы представляем себе, что между молекулами твердых тел действуют два типа сил: силы отталкивания, которые, как показывает опыт, действуют только на очень малых расстояниях, т. е. короткодействующие силы , и силы притяжения, которые действуют на более далеких расстояниях, т. е. дальнодействующие силы . В обычном ненапряженном твердом теле каждая молекула занимает нейтральное положение, так что равнодействующая этих сил равна нулю. При сжатии твердого тела возрастающее отталкивание между молекулами оказывает сопротивление.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эрик Роджерс читать все книги автора по порядку

Эрик Роджерс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Физика для любознательных. Том 1. Материя. Движение. Сила отзывы


Отзывы читателей о книге Физика для любознательных. Том 1. Материя. Движение. Сила, автор: Эрик Роджерс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x