Фрэнк Вильчек - Красота физики. Постигая устройство природы
- Название:Красота физики. Постигая устройство природы
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2016
- Город:Москва
- ISBN:978-5-9614-4154-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Фрэнк Вильчек - Красота физики. Постигая устройство природы краткое содержание
Красота физики. Постигая устройство природы - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Для этих двумерных вибраторов [56] В физике их принято называть резонаторами, если они похожи на закрытый ящик, или волноводами, если они подобно трубе допускают распространение звуковых волн от одного края к другому. Стоячие волны бывают только в резонаторах. – Прим. науч. ред.
геометрия оказывается сложнее, чем для одной струны. Это отражается в формах собственных колебаний, которые становятся более сложными.
В этих примерах для того, чтобы выделить тот или иной простой рисунок колебаний, а не смешивать несколько, мы вводим силы, которые регулярно повторяют свое действие, или, как мы говорим, периодичны по времени. Гитара позволяет нам сделать это, щипая струны, – именно для этого ее струны и предназначены! В зависимости от того, насколько быстро происходят колебания возбуждающих сил (иначе говоря, в зависимости от их частот), будет доминировать тот или иной рисунок колебаний.
Для каждого собственного колебания картина повторяется во времени. Силы, которые каждый движущийся участок струны, дерева или металла передает на соседние участки, отличаются друг от друга для разных рисунков колебаний. Скорость, с которой все изменяется, также своя для каждого из них. Те рисунки, что очень быстро изменяются в пространстве, имеют свойство порождать большие силы и, следовательно, более быстрое движение с более высокой частотой. Каждый рисунок собственных колебаний происходит со своей собственной частотой.
Эта собственная частота также называется резонансной частотой, и вот почему. Если частота возбуждающей силы близка к собственной частоте какого-то режима колебаний, этот режим непременно возникнет, проявляя себя возрастанием амплитуды колебаний. Тогда и только тогда, когда внешняя возбуждающая сила цикл за циклом совпадает по направлению с внутренними силами, нарастает и амплитуда колебаний. Любой, кто хоть раз ритмично выпрямлял ноги и тело, чтобы раскачать качели, или качал на них ребенка, знает, как это важно.

Илл. 25. Рисунки вибрации, или стоячих волн гитарной деки, создают геометрические фигуры, которые отражают взаимодействие между формой и профилем дерева и частотой порождающей колебания струны
Когда вы ударяете по камертону или гонгу, колебания расходятся кругами от точки удара, затем отражаются от краев и возвращаются, как эхо. Сложные движения быстро отдают свою энергию в бегущие звуковые волны и тепло, оставляя одну (для камертона) или несколько (для гонга) относительно долго живущих стоячих волн, каждая из которых колеблется с резонансной частотой. Именно их вы слышите как однотонный звук или медленно меняющееся созвучие после шумного начала. Гонги создают меняющиеся созвучия, постепенно теряющие свою сложность и переходящие в звук на одной ноте, потому что в них могут существовать несколько долго живущих рисунков стоячих волн, которые угасают в разном темпе.
Рисунки колебаний, или стоячих волн гитарной деки, создают геометрические фигуры, которые отражают взаимосвязь между формой и профилем дерева и частотой возбуждающих колебаний струны, как показано на илл. 25. Похожие рисунки стоячих волн на квадратных вибрирующих пластинах (внизу) более симметричны. Эти узоры имеют разительное сходство с формами электронных облаков (илл. 26). Сходство между определяющими их уравнениями абсолютно, и это еще больше потрясает.
Упущенная возможность
Очень жаль, что пифагорейцы не продолжили свои открытия с вибрирующими струнами и не рассмотрели «инструменты» на шаг сложнее, подобные нашим двумерным пластинам. Там скрывалось чудесное взаимное влияние геометрии, движения и музыки, простирающееся намного дальше простых правил струн и воспринимаемое с наслаждением ухом, глазом и разумом. Пифагорейцы тогда бы устроили бал.
Также они открыли бы путь к основным законам механики, более простой и доступный по сравнению с трудным путешествием через астрономию, который в конце концов привел к этим законам, но лишь века спустя. И, как мы скоро увидим, они проложили бы роскошную дорогу к квантовой теории.
Музыка сфер: на этот раз по-настоящему
Третий закон Артура Кларка звучит так:
Любая достаточно развитая технология неотличима от магии.
Я бы хотел добавить к этому наблюдение, которое наша медитация в полной мере подтверждает:
Технологии природы, на основании которых она создает материальный мир, достаточно развиты.
К счастью, Природа позволяет нам изучать свои фокусы, и если мы достаточно внимательны, то мы сами становимся волшебниками.
Скандальные гипотезы
В квантовом мире атомов и света Природа балует нас, показывая странные и кажущиеся невозможными трюки.
В то время, когда два из этих трюков были открыты, они казались почти невозможными. Один парадокс касается света, другой – атомов [57] Начало истории квантовой теории было сложным. Несколько других, менее очевидных парадоксов также сыграли большую роль, направив мысли первооткрывателей определенным путем, но эти люди опробовали и много тупиковых путей. Здесь я излагаю понятную и относительно простую историю, которая является существенной идеализацией того, что было на самом деле. В истории, в отличие от глубинной структуры Природы, Реальное и Идеальное очень отличаются. Мудрый учитель, иезуит отец Джеймс Мэлли подарил мне прекрасную фразу: «Более достойно благословения просить прощения, чем разрешения». – Прим. авт.
.
• Свет передается отдельными порциями, как показывает фотоэлектрический эффект, который мы обсудим прямо сейчас. Для физиков это было шоком. После того как электромагнитная теория Максвелла была подтверждена экспериментами Герца (и затем многими другими), физики считали, что понимают, что такое свет, а именно – электромагнитная волна. Но электромагнитные волны непрерывны!
• Атомы являются составными объектами, но при этом они совершенно жесткие. Электроны впервые были определенно обнаружены в 1897 г. Дж. Томсоном, и наиболее важные факты об атомах были выяснены в течение примерно следующих 15 лет. А именно: атом состоит из крошечного ядра, несущего в себе почти всю массу и весь положительный электрический заряд. Ядро окружено отрицательно заряженными электронами, количество которых достаточно для того, чтобы общий заряд атома был нейтральным. Атомы имеют разные размеры, в зависимости от химического элемента, но, как правило, они бывают порядка 10–8 см – эта единица длины называется ангстремом. При этом атомное ядро в 100 000 раз меньше. Парадокс в том, как вся эта структура может оставаться стабильной? Почему электроны просто не уступают притягивающей силе ядра и не падают на него?
Читать дальшеИнтервал:
Закладка: