Дэйв Голдберг - Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса
- Название:Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса
- Автор:
- Жанр:
- Издательство:АСТ
- Год:2015
- Город:Москва
- ISBN:978-5-17-090528-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дэйв Голдберг - Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса краткое содержание
Можно ли создать устройство для мгновенной передачи информации? Что будет, если Землю засосет в черную дыру? Что не рассказывают на школьных уроках о времени и пространстве? Читайте, и вы узнаете ответы на эти вопросы. Это понятно, увлекательно, это может быть смешно — именно так вы теперь будете думать о физике.
Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
У всего на свете есть общая тенденция — приходить во все больший беспорядок. Вам эта закономерность известна как Второй закон термодинамики. Сформулировать Второй закон можно довольно цветисто — «все разваливается», — но на самом деле все еще проще.
Своим становлением термодинамика по крайней мере отчасти обязана промышленной революции. В 1820 годах французский инженер Николя Леонар Сади Карно всего-навсего хотел усовершенствовать паровой двигатель — и обнаружил, что как ни старайся, а какая-то часть энергии все равно расходуется впустую в виде тепла. К 1850 годам Рудольф Клаузиус предложил более научную формулировку закона, получившего название Второго закона термодинамики:
Не бывает процессов, единственным результатом которых была бы передача тепла от тела с более низкой температурой телу с более высокой температурой.
Любая система, предоставленная сама себе — в том числе и вселенная — в конечном итоге достигнет температурного равновесия. Все станет одинаково неупорядоченным. Равномерность — это более или менее предельное отсутствие структуры. Формулировка Второго закона по Клаузиусу сама по себе не слишком познавательна. Если не сдержаться, можно даже ляпнуть грубость — мол, это же очевидно!
К счастью, через 20 лет после того, как Клаузиус сформулировал Второй закон, Людвиг Больцман пришел нам на выручку и определил понятие энтропии. Тут никаких формул не нужно, достаточно классического примера.
Возьмите монетку и бросьте ее 100 раз. Я подожду. Если монетка у вас честная, без подвоха, то есть падает орлом или решкой вверх с одинаковой вероятностью, вы, вероятно, не очень удивитесь, обнаружив, что примерно 50 раз (плюс-минус) у вас выпал орел (О), а другие 50 раз (минус-плюс) — решка (Р).
Если продажи этой книги пойдут неплохо (подождите, я скажу, насколько именно неплохо), не исключено, что кто-то из вас посмотрит на свои записи — и, представьте себе, обнаружит, что все сто раз у него выпал орел! Вот так странность! Или нет?
Ваш друг-зубрила, вероятно, кисло заметит, что не надо так уж удивляться, если все монетки у вас выпали орлами. Вы же не удивились бы, наверное, если бы оказалось, что ваша монетка упала вверх орлом и решкой в определенной последовательности. Вот, например, мои сто бросков дали следующий результат:
Любая цепочка событий не очень-то и вероятна. Выбросить орла при первом броске можно с вероятностью 50 %, решку при втором — тоже 50 %, вместе они составляют 25 %. Поясню: вероятность получить при двух бросках монеты определенную последовательность из орла и решки (например, ОР) составляет 25 %, однако столь же вероятно, что у вас выпадет похожая комбинация вроде РО. Если посчитать вероятности дальше, получится, что шанс получить любую конкретную последовательность результатов после 100 бросков составляет примерно 1 на 10 30, и приблизительно столько нужно собрать читателей этой книги, чтобы все они бросили монетку по 100 раз и у кого-то одного выпала последовательность из 100 орлов. Так чего, собственно, так волноваться из-за какой-то одной маловероятной последовательности?
Случалось ли кому-то из ваших друзей или, Боже упаси, вам самим влюбляться, терять голову и подсчитывать, насколько невероятно, что ваша пассия и есть та самая единственная ваша половинка на всем белом свете? А если вы еще больший эгоцентрист, случалось ли вам задумываться, насколько невероятно ваше собственное существование? Мало того что тут же встает вопрос о зарождении жизни, налицо крайне малая вероятность встречи и знакомства ваших родителей, двух пар ваших бабушек и дедушек, четырех пар прабабушек и прадедушек — и т. д. на десятки миллионов поколений? Нет, серьезно, велики ли шансы?!..
Да, конечно, любая конкретная последовательность событий крайне маловероятна, однако что-то должно происходить. Мы начинаем приписывать событиям значение только в исторической перспективе. Так же и с монетками: каждая конкретная последовательность орлов и решек крайне маловероятна. Однако у огромного количества последовательностей орлов и решек есть одна общая черта: на сто бросков приходится примерно по 50 орлов и решек [31] Моя случайная последовательность получилась ровно 50 на 50, но я бы ничуть не удивился, если бы у меня вышло, например, 48 на 52.
. Точная последовательность результатов бросков называется микросостоянием системы, в то время как общие параметры — в нашем случае это общее число орлов, но на самом деле это запросто может быть что-нибудь вроде температуры или плотности газа — называется макросостоянием .
Получить все орлы — это уникальный случай. Для такого конкретного макросостояния есть только одно микросостояние, поэтому ситуация и правда особая.
В сущности, энтропия — это количество микросостояний [32] Строго говоря, это логарифм числа вариантов, однако поскольку заниматься вычислениями мы не будем, эта мелочь не должна вас особенно тревожить. Важно лишь одно: для макросостояний, которых можно достичь множеством разных способов, энтропия высока. А если то или иное макросостояние обеспечивают лишь несколько микросостояний, энтропия низка.
, в которые могут организоваться частицы или броски монеток, чтобы в результате у вас получилась конфигурация с тем же макросостоянием.
Что именно обеспечивает уникальное макросостояние в системах более хитроумных, чем броски монеток, определить трудновато. К счастью, 1) у нас не учебник математики и 2) для большинства практических целей точное представление о том, как выделить то или иное макросостояние, особенно не влияет на суть аргументации.
Возьмем, к примеру, покер. Существует примерно 2 600 000 комбинаций из пяти карт, которые можно вытянуть из стандартной колоды. Флеш-роялей — главной комбинации карт в покере — из них всего четыре (по одному на масть). Однако вытянуть «старшую карту» или кикер (не стрит, не флеш и не пару) можно более чем полутора миллионами способов. То, какая у вас комбинация (флеш-рояль против кикера) — это макросостояние, тогда как конкретный набор карт — это микросостояние. Энтропия кикера гораздо выше, чем энтропия флеш-рояля.
Ну или порядок у флеш-рояля выше. Но это вы, наверное, и без меня знаете.
А теперь представьте себе, что вы не бросаете монетку и не играете в карты, а взяли четыре молекулы газа и поместили в левую половину коробки. Это очень аккуратный способ хранения с очень низкой энтропией. Теперь предоставьте природе сделать свое дело — и молекулы запорхают во все стороны, причем каждая будет проводить половину времени в левой половине коробки (Л), а половину в правой (П). Можно сделать снимок случайного положения четырех молекул в любой момент. Выстроиться они могут 16 способами, но лишь два из них — ЛЛЛЛ и ПППП — предполагают, что все четыре молекулы окажутся в одной половине коробки. Вероятность такого положения дел всего 12,5 %. Все остальное время молекулы распределены более равномерно. Например, есть шесть способов (37,5 %) рассортировать молекулы так, чтобы в каждой половине коробки их было ровно по две. Равномерное распределение — это более высокий уровень энтропии, чем концентрирование.
Читать дальшеИнтервал:
Закладка: