Дэйв Голдберг - Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса

Тут можно читать онлайн Дэйв Голдберг - Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство АСТ, год 2015. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса
  • Автор:
  • Жанр:
  • Издательство:
    АСТ
  • Год:
    2015
  • Город:
    Москва
  • ISBN:
    978-5-17-090528-7
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Дэйв Голдберг - Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса краткое содержание

Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса - описание и краткое содержание, автор Дэйв Голдберг, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Не любите физику? Вы просто не читали книги Дэйва Голдберга! Эта книга познакомит вас с одной из самых интригующих тем современной физики — фундаментальными симметриями. Ведь в нашей прекрасной Вселенной практически все — от антивещества и бозона Хиггса до массивных скоплений галактик — формируется на основе скрытых симметрий! Именно благодаря им современные ученые делают свои самые сенсационные открытия.
Можно ли создать устройство для мгновенной передачи информации? Что будет, если Землю засосет в черную дыру? Что не рассказывают на школьных уроках о времени и пространстве? Читайте, и вы узнаете ответы на эти вопросы. Это понятно, увлекательно, это может быть смешно — именно так вы теперь будете думать о физике.

Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса - читать онлайн бесплатно полную версию (весь текст целиком)

Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса - читать книгу онлайн бесплатно, автор Дэйв Голдберг
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Почему Вселенная сначала была такая скучная?

Вы сидите в горячей ванне, и сначала вам тепло и уютно, а потом события приобретают неприятный оборот — вода и воздух в ванной комнате приходят в равновесие, и вы ежитесь от холода.

То же самое можно сказать и про будущее вселенной. С течением времени тепло распределяется по вселенной все равномернее. Звезды выгорают, черные дыры в конце концов испаряются, везде царят холод и темнота. Конечным состоянием вселенной будет однородный, невероятно огромный и холодный океан из фотонов.

А как же наше происхождение? Поначалу вселенная была пестрая, состояла из крошечных участков тепла и холода. Однако горячие участки были всего лишь на 1/100 000 теплее, а холодные — лишь на 1/100 000 холоднее среднего.

На первый взгляд кажется, будто начало и конец вселенной очень похожи друг на друга, однако я утверждаю, что для конца вселенной характерна низкая энтропия, в то время как в начале энтропия была высокой. Откуда я это взял?

Все дело в гравитации. Начните с совершенно однородной вселенной и добавьте всего несколько сгустков там, где плотность чуть выше среднего. Оглянуться не успеете, как все близлежащее вещество начнет падать туда, и маленький сгусток станет сгустком побольше.

Энтропия — это просто количество способов, которыми можно перемешать систему так, чтобы на вид она осталась прежней. Как мы видели на примере радиоактивного распада, все хочет достичь состояния минимальной возможной энергии [35] А между тем энергию нужно куда-то девать. Первый закон термодинамики гласит, что энергия сохраняется (а еще — что никогда нельзя говорить о термодинамике). . Когда частицы падают на сгустки, энергия превращается в тепло, а тепло — это всегда энтропия. Крошечные сгустки становятся все больше и больше, энтропия растет, и в результате получаются галактики, звезды и вы.

На ранних стадиях существования вселенной, когда все было упаковано гораздо плотнее, гравитация играла куда более важную роль, чем сегодня. Сейчас местная гравитация играет куда более важную роль, чем в далеком будущем. Для вселенной, где правит гравитация (как в начале времен), конфигурация минимальной энтропии — это идеально равномерное распределение. В будущем, когда гравитация утратит свою важность, идеально равномерное распределение — это конфигурация максимальной энтропии.

Влияние гравитации особенно хорошо заметно на примере распределения галактик. Начиная с 2000 года в рамках проекта «Слоановский цифровой небесный обзор» (Sloan Digital Sky Survey, SDSS) начали составлять карты почти всей близлежащей вселенной. Были сделаны снимки более ста миллионов галактик и измерены расстояния более чем до миллиона из них. И выяснилось, что налицо отчетливая структура — сгустки, волокна и пустые области (они так и называются — «пустоты», или «войды»). Однако если заглянуть в далекое прошлое (то есть взглянуть на очень далекие области, что одно и то же), окажется, что вселенная заполнена очень равномерно.

Это задача не из легких она во многом связана с вопросом о том почему ось - фото 17

Это задача не из легких, она во многом связана с вопросом о том, почему ось времени направлена именно в таком направлении, а не в каком-нибудь другом. Возьмите вселенную в ее нынешнем виде и представьте себе кино, финалом которого было бы нынешнее положение дел. Если пустить кино задом наперед, все начнется с высокой энтропии, а закончится состоянием низкой энтропии. Иначе никак — законы физики, как мы уже убедились, обратимы во времени.

Сделаем следующий шаг и чуть-чуть изменим нынешнюю вселенную. Переставим там и сям про нескольку атомов. Если запустить задом наперед такую слегка измененную вселенную, то мы не придем к «началу» с равномерным распределением. Шансы на то, чтобы обнаружить в начале вселенной состояние низкой энтропии, оказались на диво малы — так же малы, как и вероятность, что вселенная будет развиваться в сторону состояния низкой энтропии.

В таком контексте трудно даже определить, что такое «маловероятно». Обычно, когда мы говорим, что что-то маловероятно, то имеем в виду, что есть какая-то цепочка событий, которая приведет к такому финалу, и основываем вероятность на событиях в прошлом. А у начала вселенной таких событий не было.

Вот такова в общем и целом «гипотеза прошлого». Можно даже представить себе, что это закон природы — не исключено, что у всех вселенных в момент зарождения энтропия низкая. Однако, честно говоря, это не очень утешает. Вопрос пока открыт, но в воздухе витают кое-какие идеи поинтереснее, чем «в самом начале вселенная была с низкой энтропией, потому что так сложилось».

Например, очень может быть, что наша вселенная — не первая. Многие ученые, в том числе физики из Принстона Пол Штейнхардт, Нил Тьюрок и их коллеги, предположили, что у вселенной случаются периоды расширения. В числе свойств так называемого «экпиротического сценария» [36] От греческого слова, которое буквально означает «обращение в пламя» — ничего себе! — то, что каждый данный участок вселенной со временем растягивается все сильнее и сильнее. В такой вселенной в целом энтропия не уменьшается, но по мере расширения отдельного участка может несколько разбавиться. Может быть, наша вселенная — всего лишь маленький клочок «множественной вселенной» или «мультиверса» куда больших масштабов, общая энтропия в которой была и остается колоссальной.

Иногда роль множественной вселенной рассматривают с иной точки зрения. Шон Кэрролл, физик из Калифорнийского технологического института, считает, что время — это явление, развивающееся на наших глазах. Он полагает, что течение времени в нашей вселенной и во всех других «пузырьках», составляющих множественную вселенную, — это и есть увеличение энтропии:

Стрела времени — это следствие не того, что «энтропия увеличивается при движении в будущее», а того, что «энтропия при движении времени в одну сторону совсем не такая, как при движении в другую сторону».

Другие ученые пошли даже дальше. Например, голландский ученый Эрик Верлинде утверждает, что даже фундаментальные на первый взгляд феномены вроде гравитации следуют из Второго закона термодинамики и теории струн.

Все это очень занимательно, однако в науке подобные идеи не становятся общепринятыми. Лично я отношусь к ним несколько скептически. В следующей главе мы как следует поговорим о множественной вселенной, однако сделать это нам будет непросто отчасти потому, что непонятно, удастся ли нам когда-нибудь подтвердить существование «пузырьковых вселенных» непосредственно данными наблюдений или экспериментов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Дэйв Голдберг читать все книги автора по порядку

Дэйв Голдберг - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса отзывы


Отзывы читателей о книге Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса, автор: Дэйв Голдберг. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x