Александр Астахов - Физика. Порядок вещей, или Осознание знаний. Книга 2

Тут можно читать онлайн Александр Астахов - Физика. Порядок вещей, или Осознание знаний. Книга 2 - бесплатно ознакомительный отрывок. Жанр: sci-phys. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Физика. Порядок вещей, или Осознание знаний. Книга 2
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    9785448503276
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Александр Астахов - Физика. Порядок вещей, или Осознание знаний. Книга 2 краткое содержание

Физика. Порядок вещей, или Осознание знаний. Книга 2 - описание и краткое содержание, автор Александр Астахов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«В мире, как он описывается многими науками, отсутствует смысл. Это, однако, означает не то, что мир лишен смысла, а лишь то, что многие науки слепы к нему. Смысл приносится в жертву многими науками».Виктор Франкл«Осознание знания – откровение XXI века».А. П. СмирновМоя книга – это осознание достигнутых знаний и некоторые осознанные выводы из них.Книга 2 опубликована в книге «Физика. Порядок вещей, или Осознание знаний».

Физика. Порядок вещей, или Осознание знаний. Книга 2 - читать онлайн бесплатно ознакомительный отрывок

Физика. Порядок вещей, или Осознание знаний. Книга 2 - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Александр Астахов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В результате, в конце цикла относительная скорость точки на радиусе и тела в переносном направлении становится равной нулю, а скорость относительного движения поворотного движения направлена строго вдоль радиуса. На этом полный цикл формирования поворотного движения и ускорения Кориолиса заканчивается (см. Рис. 4.1.2.1, поз. 3), после чего начинается новый абсолютно идентичный предыдущему цикл поворотного движения. Разумеется, всё это происходит на микроуровне.

В соответствии с механизмом отражения, ускоренное удаление тела от радиуса в новом после отражения направлении, определяется, как проекция его ускорения на перпендикуляр к отражающему радиусу, что и есть ускорение переносной скорости по абсолютной величине. Следовательно, ускорение радиальной скорости по направлению и ускорение переносной скорости по величине это одна и та же физическая величина, равная ускорению отражения.

Кто то может возразить, что с ЦСУ осуществляется изменение относительной радиальной скорости исключительно только по направлению. Следовательно, для изменения линейной скорости переносного вращения по абсолютной величине необходимо дополнительное самостоятельное ускорение, как это декларируется в классической физике и в частности у Матвеева (см. фотокопию вначале настоящей главы). Однако, как показано в главе (3.1. и 3.2.) изменение скорости по направлению принципиально не возможно без изменения её абсолютной величины, если нет специального регулирования, которое осуществляется в классическом ЦСУ полного цикла.

Из этого следует, что «ЦСУ» в составе ускорения Кориолиса, в котором нет такого регулирования не является классическим ЦСУ полного цикла, а значит это собственно и вообще не ЦСУ в его классическом понимании. В поворотном движении изменение радиальной скорости по направлению происходит за счёт соответствующего приращения скорости переносного вращения по величине и наоборот, приращение скорости переносного вращения по величине является проекцией изменённой по направлению радиальной скорости на перпендикуляр к радиусу (см. Рис. 4.1.2.1, поз. 2, 3).

Естественно, что абсолютная величина каждого мгновенного ускорения отражения внутри цикла формирования ускорения Кориолиса может превышать среднее ускорение цикла не только вдвое, но и в десятки раз, что не меняет физического смысла ускорения Кориолиса. В конечном итоге тело не может двигаться в направлении линейной скорости переносного вращения быстрее соответственной точки на радиусе, как мяч в конечном итоге не может двигаться быстрее футболиста.

Если тело получит, например, в 10 раз большее мгновенное ускорение отражения, чем среднее обобщённое ускорение Кориолиса, то к моменту отрыва от радиуса оно наберёт и в 10 раз большую скорость. Но при этом и радиусу, вращающемуся с постоянной угловой скоростью, понадобится в 10 раз большее время, чтобы догнать тело. При этом среднее ускорение Кориолиса при неизменной угловой скорости и неизменной величине скорости относительного движения количественно останется неизменным:

а к= 10 * V е/ (10 * t) = V е/ t

Из классической физики, а именно из понятия годографа известно, что центростремительное ускорение – это линейная скорость линейной скорости. Поэтому на рисунке (4.1.2.1, позиция 3) вектор ускорения по изменению радиальной скорости по направлению ( a r ), как ему и положено быть по определению, размещён вдоль касательной к годографу вектора радиальной скорости (Vr).

Далее, если в конец вектора радиальной скорости параллельно самому себе перенести ещё и проекцию вектора абсолютного ускорения, то можно увидеть, что вектор ( a r ) в точности совпадает с вектором ( a ve ), как с проекцией той же самой ( a абс ) на ту же самую касательную к тому же самому годографу. При этом один вектор ( a абс ) не может иметь две одинаковые, но независимые проекции на одно и то же направление. Следовательно, векторы ( a ve ) и ( a r ) это одна и та же физическая величина, которая и является ускорением Кориолиса.

Природа никогда не повторяется, в ней нет двух одинаковых отпечатков пальцев и радужной оболочки глаз! И уж тем более в природе не может быть двух разных по своей физической сущности но абсолютно одинаковых по величине ускорений.

Таким образом, две половинки классического ускорения Кориолиса это одна и та же физическая величина, вдвое меньшая своего классического значения.

При этом напряжение Кориолиса по абсолютной величине действительно соответствует классической силе Кориолиса (см. гл. 3.4.3 и настоящую 4.1.). Однако половина этого напряжения не реализуется в новое движение тела. Она компенсируется истинной силой Кориолиса—Кеплера, а энергия этого напряжения рассеивается среди элементов радиуса, тела и окружающей среды. В классической физике нет истинной силы Кориолиса—Кеплера. Поэтому для того, чтобы оправдать полную энергию реального напряжения Кориолиса и была придумана сказка про удвоенное ускорение Кориолиса (2ωV).

***

Идентичность приращения линейной скорости переносного вращения по абсолютной величине и относительной скорости по направлению можно показать и аналитически. Приращение радиальной скорости относительного движения по направлению равно:

ΔVr = Vr * Δα = Vr * ω * Δt

Это выражение соответствует третьему члену выражения (66.4) у Матвеева.

Произведение (Vr * Δt) в выражении для (ΔVr) есть не что иное, как изменение радиуса переносного вращения (Δr). Тогда выражение для (ΔVr) можно записать в виде:

ΔVr = Vr * Δα = Vr * ω * Δt = (Vr * Δt) * ω = Δ r * ω

Но (Δr * ω)есть не что иное, как прирост линейной скорости переносного движения в связи с изменением радиуса переносного вращения:

ΔVл = r 2* ω – r 1* ω = (r 2 – r 1) * ω = Δr * ω

Отсюда:

ΔVr = ΔVл

Аналогичным образом можно показать, что прирост абсолютной скорости в направлении линейной скорости переносного вращения по абсолютной величине есть не что иное, как прирост радиальной скорости относительного движения по направлению.

ΔVл= Vn 2 – Vn 1= ω * r 2 – ω * r 1 =ω * Δr = ω * (Vr * Δt) =

= Vr * (ω * Δt) = Vr * Δα = Δ Vr

То есть:

ΔVл = ΔVr

Следовательно, ускорение Кориолиса ( w к) можно выразить через знак полного физического соответствия (≡), обозначающий не просто математическое равенство, а одну и ту же физическую величину. Если такого знака нет в математике, то его следует ввести, поскольку подобных ситуаций в существующей математической физике предостаточно.

w к = (ΔVл / ΔtΔVr / Δt) = ω * Vr

Как это ни парадоксально этот же самый математический вывод в классической физике приводится как подтверждение классической модели поворотного ускорения, а не как выражение одного и того же поворотного ускорения через взаимосвязь углового и линейного перемещения. Однако даже математическое равенство означает, прежде всего, идентичность физических величин количественно, но никак не их кратность.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Астахов читать все книги автора по порядку

Александр Астахов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Физика. Порядок вещей, или Осознание знаний. Книга 2 отзывы


Отзывы читателей о книге Физика. Порядок вещей, или Осознание знаний. Книга 2, автор: Александр Астахов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x