Александр Астахов - Физика. Порядок вещей, или Осознание знаний. Книга 2
- Название:Физика. Порядок вещей, или Осознание знаний. Книга 2
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:9785448503276
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Астахов - Физика. Порядок вещей, или Осознание знаний. Книга 2 краткое содержание
Физика. Порядок вещей, или Осознание знаний. Книга 2 - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В результате, в конце цикла относительная скорость точки на радиусе и тела в переносном направлении становится равной нулю, а скорость относительного движения поворотного движения направлена строго вдоль радиуса. На этом полный цикл формирования поворотного движения и ускорения Кориолиса заканчивается (см. Рис. 4.1.2.1, поз. 3), после чего начинается новый абсолютно идентичный предыдущему цикл поворотного движения. Разумеется, всё это происходит на микроуровне.
В соответствии с механизмом отражения, ускоренное удаление тела от радиуса в новом после отражения направлении, определяется, как проекция его ускорения на перпендикуляр к отражающему радиусу, что и есть ускорение переносной скорости по абсолютной величине. Следовательно, ускорение радиальной скорости по направлению и ускорение переносной скорости по величине это одна и та же физическая величина, равная ускорению отражения.
Кто то может возразить, что с ЦСУ осуществляется изменение относительной радиальной скорости исключительно только по направлению. Следовательно, для изменения линейной скорости переносного вращения по абсолютной величине необходимо дополнительное самостоятельное ускорение, как это декларируется в классической физике и в частности у Матвеева (см. фотокопию вначале настоящей главы). Однако, как показано в главе (3.1. и 3.2.) изменение скорости по направлению принципиально не возможно без изменения её абсолютной величины, если нет специального регулирования, которое осуществляется в классическом ЦСУ полного цикла.
Из этого следует, что «ЦСУ» в составе ускорения Кориолиса, в котором нет такого регулирования не является классическим ЦСУ полного цикла, а значит это собственно и вообще не ЦСУ в его классическом понимании. В поворотном движении изменение радиальной скорости по направлению происходит за счёт соответствующего приращения скорости переносного вращения по величине и наоборот, приращение скорости переносного вращения по величине является проекцией изменённой по направлению радиальной скорости на перпендикуляр к радиусу (см. Рис. 4.1.2.1, поз. 2, 3).
Естественно, что абсолютная величина каждого мгновенного ускорения отражения внутри цикла формирования ускорения Кориолиса может превышать среднее ускорение цикла не только вдвое, но и в десятки раз, что не меняет физического смысла ускорения Кориолиса. В конечном итоге тело не может двигаться в направлении линейной скорости переносного вращения быстрее соответственной точки на радиусе, как мяч в конечном итоге не может двигаться быстрее футболиста.
Если тело получит, например, в 10 раз большее мгновенное ускорение отражения, чем среднее обобщённое ускорение Кориолиса, то к моменту отрыва от радиуса оно наберёт и в 10 раз большую скорость. Но при этом и радиусу, вращающемуся с постоянной угловой скоростью, понадобится в 10 раз большее время, чтобы догнать тело. При этом среднее ускорение Кориолиса при неизменной угловой скорости и неизменной величине скорости относительного движения количественно останется неизменным:
а к= 10 * V е/ (10 * t) = V е/ t
Из классической физики, а именно из понятия годографа известно, что центростремительное ускорение – это линейная скорость линейной скорости. Поэтому на рисунке (4.1.2.1, позиция 3) вектор ускорения по изменению радиальной скорости по направлению ( a r ), как ему и положено быть по определению, размещён вдоль касательной к годографу вектора радиальной скорости (Vr).
Далее, если в конец вектора радиальной скорости параллельно самому себе перенести ещё и проекцию вектора абсолютного ускорения, то можно увидеть, что вектор ( a r ) в точности совпадает с вектором ( a ve ), как с проекцией той же самой ( a абс ) на ту же самую касательную к тому же самому годографу. При этом один вектор ( a абс ) не может иметь две одинаковые, но независимые проекции на одно и то же направление. Следовательно, векторы ( a ve ) и ( a r ) это одна и та же физическая величина, которая и является ускорением Кориолиса.
Природа никогда не повторяется, в ней нет двух одинаковых отпечатков пальцев и радужной оболочки глаз! И уж тем более в природе не может быть двух разных по своей физической сущности но абсолютно одинаковых по величине ускорений.
Таким образом, две половинки классического ускорения Кориолиса это одна и та же физическая величина, вдвое меньшая своего классического значения.
При этом напряжение Кориолиса по абсолютной величине действительно соответствует классической силе Кориолиса (см. гл. 3.4.3 и настоящую 4.1.). Однако половина этого напряжения не реализуется в новое движение тела. Она компенсируется истинной силой Кориолиса—Кеплера, а энергия этого напряжения рассеивается среди элементов радиуса, тела и окружающей среды. В классической физике нет истинной силы Кориолиса—Кеплера. Поэтому для того, чтобы оправдать полную энергию реального напряжения Кориолиса и была придумана сказка про удвоенное ускорение Кориолиса (2ωV).
***
Идентичность приращения линейной скорости переносного вращения по абсолютной величине и относительной скорости по направлению можно показать и аналитически. Приращение радиальной скорости относительного движения по направлению равно:
ΔVr = Vr * Δα = Vr * ω * Δt
Это выражение соответствует третьему члену выражения (66.4) у Матвеева.
Произведение (Vr * Δt) в выражении для (ΔVr) есть не что иное, как изменение радиуса переносного вращения (Δr). Тогда выражение для (ΔVr) можно записать в виде:
ΔVr = Vr * Δα = Vr * ω * Δt = (Vr * Δt) * ω = Δ r * ω
Но (Δr * ω)есть не что иное, как прирост линейной скорости переносного движения в связи с изменением радиуса переносного вращения:
ΔVл = r 2* ω – r 1* ω = (r 2 – r 1) * ω = Δr * ω
Отсюда:
ΔVr = ΔVл
Аналогичным образом можно показать, что прирост абсолютной скорости в направлении линейной скорости переносного вращения по абсолютной величине есть не что иное, как прирост радиальной скорости относительного движения по направлению.
ΔVл= Vn 2 – Vn 1= ω * r 2 – ω * r 1 =ω * Δr = ω * (Vr * Δt) =
= Vr * (ω * Δt) = Vr * Δα = Δ Vr
То есть:
ΔVл = ΔVr
Следовательно, ускорение Кориолиса ( w к) можно выразить через знак полного физического соответствия (≡), обозначающий не просто математическое равенство, а одну и ту же физическую величину. Если такого знака нет в математике, то его следует ввести, поскольку подобных ситуаций в существующей математической физике предостаточно.
w к = (ΔVл / Δt≡ ΔVr / Δt) = ω * Vr
Как это ни парадоксально этот же самый математический вывод в классической физике приводится как подтверждение классической модели поворотного ускорения, а не как выражение одного и того же поворотного ускорения через взаимосвязь углового и линейного перемещения. Однако даже математическое равенство означает, прежде всего, идентичность физических величин количественно, но никак не их кратность.
Читать дальшеИнтервал:
Закладка: