Яков Гегузин - Живой кристалл

Тут можно читать онлайн Яков Гегузин - Живой кристалл - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство «Наука», год 1981. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Живой кристалл
  • Автор:
  • Жанр:
  • Издательство:
    «Наука»
  • Год:
    1981
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3.5/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Яков Гегузин - Живой кристалл краткое содержание

Живой кристалл - описание и краткое содержание, автор Яков Гегузин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга содержит научно-популярное изложение современных представлений о физических явлениях и процессах, которые происходят в реальных кристаллах и определяют их физические свойства и эксплуатационные характеристики. Рассказано о движении атомов, составляющих решетку, о характеристиках и свойствах различных дефектов строения реальных кристаллов, о том, как кристалл хранит воспоминания о своем прошлом, повлиявшем на его структуру. Используемые в книге формулы вполне доступны овладевшему лишь начальными сведениями из алгебры.

Книга рассчитана на всех лиц, интересующихся современным естествознанием.

Живой кристалл - читать онлайн бесплатно полную версию (весь текст целиком)

Живой кристалл - читать книгу онлайн бесплатно, автор Яков Гегузин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Решение этой задачи почти самоочевидно: сместить в одном и другом направлении второй атом из среднего положения, когда l 1,2 = l 2,3 — это значит растянуть одну пружинку и сжать другую. При этом энергия, запасенная в каждой из пружинок, возрастает, а это и означает, что расположение, соответствующее минимуму энергии, должно быть упорядоченным ( l 1,2 = l 2,3 !).

Теперь о происхождении беспорядка.

Вначале, не уточняя структуру очага беспорядка, можно утверждать: его появление обусловлено тем, что с повышением температуры увеличивается энергия теплового движения атомов, оно становится более активным и в разных участках кристалла нарушается идеальный порядок в расположении атомов. Казалось бы, ну и пусть себе движение становится более активным, а центры, вокруг которых происходят тепловые колебания атомов или ионов, могли бы оставаться на месте и порядок оставался бы порядком. Такое пожелание вроде бы ничему не противоречит, а, исполнись оно, порядок, как в стихотворных строках, на радость поэту, сохранился бы.

Наше интуитивное желание видеть в кристалле идеальный порядок, оказывается, противоречит законам природы. Не уверен, надо ли говорить «к сожалению», но противоречит. Дело здесь вот в чем. Для возникновения очага беспорядка — например, атом покинул свое законное место, которое он занимал в узле решетки, и перескочил в зазор между узлами, в междоузлие, — необходима некоторая энергия. В области будущего очага беспорядка она, заимствованная из энергии теплового движения атомов ближайшего окружения, может появиться случайно. Ближайшие атомы колеблются не строго согласованно, и случайное стечение обстоятельств может привести к такому перераспределению энергии их тепловых колебаний, при котором в области будущего очага беспорядка появится энергия, достаточная для рождения очага. Говорят так: появилась необходимая энергетическая флуктуация. С ростом температуры, когда активность теплового движения возрастает, должна возрастать и частота флуктуаций энергии, достаточной для возникновения очагов беспорядка, и, следовательно, концентрация очагов также должна расти.

Здесь необходимо подчеркнуть, что флуктуация в кристалле — эффект, как говорят, коллективный, в нем участвует группа атомов, а не только тот единственный, который, например, оказался выброшенным из узла в междоузлие. Просто именно он попал в область пика флуктуаций, а мог бы попасть и любой иной из коллектива атомов, оказавшихся в очаге флуктуаций.

Итак, и флуктуации энергии, и очаги беспорядка возникают самопроизвольно. Это, однако, не означает, что появление очагов беспорядка в кристалле сопровождается увеличением его энергии, ее удалением от требующегося термодинамикой минимума. Дело здесь вот в чем. Для того чтобы при повышенной температуре поддерживать в кристалле идеальный порядок (все атомы в узлах, все узлы заняты атомами!), надо было бы энергию тратить на то, чтобы гасить самопроизвольно возникающие энергетические флуктуации. Так вот, эта энергия, привнесенная в кристалл извне, делала бы его энергию заведомо неминимальной. А это и значит, что очаги беспорядка возникать будут просто потому, что не возникать они не могут. Они — условие существования кристалла при температуре, отличной от нуля. Они — непременный признак жизни кристалла.

Прочел написанное о термодинамической оправданности беспорядка и почувствовал, что, видимо, читателю нужны дополнительные разъяснения и примеры.

Примеры в научных доказательствах — вещь очень деликатная. Как известно, пример, согласующийся с утверждением, имеет силу лишь иллюстрации, а доказательной силы — никакой, а пример, противоречащий утверждению, имеет доказательную силу: он свидетельствует о том, что утверждение неверно. Скажем, полная корзина красных помидоров фактом своего существования не противоречит утверждению, «все помидоры красные», но и не доказывает его. А один зеленый помидор это утверждение начисто опровергает. И все же я приведу пример в надежде, что он поможет (!) читателю освоиться с мыслью о термодинамической оправданности беспорядка. Если средняя кинетическая энергия одной молекулы в идеальном газе kT /2, то п молекул имеют энергию пkT /2. Эта энергия не изменится, если объем газа увеличится, и, казалось бы, нет оправдания стремлению газа расширяться в пустоту. А между тем газ это самопроизвольно делает при первой же возможности. А оправдание есть и состоит оно в том, что, заняв большой объем, газ окажется в состоянии с большей степенью беспорядка, чем в малом объеме. И самопроизвольное возникновение беспорядка в кристалле, и самопроизвольное расширение газа в пустоту — следствия одной и той же термодинамически оправданной тенденции. Напомню: рассказанное — не доказательство, а всего лишь пример!

Коротко о структуре очагов беспорядка. Главным образом с точки зрения «прока» от них. В этом случае лучше вообще говорить не о структуре, а о величине энергетической флуктуации, необходимой для появления очага данного типа. Очевидно следующее: чем больше нарушение идеальной структуры кристалла в очаге, тем большая нужна флуктуация энергии и тем меньше таких очагов появится при данной температуре. Поэтому очаги значительного беспорядка (поры, трещины, границы) в кристалле самопроизвольно появляться не будут. В энергетических единицах они стоят дорог о и кристаллу противопоказаны, прока от них нет, одни расходы. А вот мелкие очаги беспорядка (лишний атом в междоузлии или вакантная позиция в узле решетки) в кристалле будут: стоят они недорого, а без очагов беспорядка, как мы выяснили, кристалл существовать не может.

Итак, в беспорядке есть прок! Однако прок проком, но должен все-таки существовать естественный предел этому беспорядку, иначе кристалл — образование упорядоченное — потеряет смысл, а с ним и право на существование.

Обсудим меру необходимого кристаллу беспорядка избрав в качестве примера очага - фото 19

Обсудим меру необходимого кристаллу беспорядка, избрав в качестве примера очага беспорядка в кристалле узел, не замещенный атомом, т. е. вакансию. Обсудим — значит попытаемся выяснить, сколько вакансий должно быть в кристалле при данной температуре, чтобы удовлетворить его потребность в «вакансионном беспорядке».

Вопрос надо уточнить, так как и крупинка в солонке — кристалл, и глыба каменной соли — кристалл. И поэтому следует говорить не о количестве вакансий; а об их концентрации, т. е. об отношении числа вакантных узлов n υ к числу всех узлов кристаллической решетки N 0 :

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Яков Гегузин читать все книги автора по порядку

Яков Гегузин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Живой кристалл отзывы


Отзывы читателей о книге Живой кристалл, автор: Яков Гегузин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x