Яков Гегузин - Живой кристалл
- Название:Живой кристалл
- Автор:
- Жанр:
- Издательство:«Наука»
- Год:1981
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Яков Гегузин - Живой кристалл краткое содержание
Книга содержит научно-популярное изложение современных представлений о физических явлениях и процессах, которые происходят в реальных кристаллах и определяют их физические свойства и эксплуатационные характеристики. Рассказано о движении атомов, составляющих решетку, о характеристиках и свойствах различных дефектов строения реальных кристаллов, о том, как кристалл хранит воспоминания о своем прошлом, повлиявшем на его структуру. Используемые в книге формулы вполне доступны овладевшему лишь начальными сведениями из алгебры.
Книга рассчитана на всех лиц, интересующихся современным естествознанием.
Живой кристалл - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Несколько фраз, завершающих очерк. Они были написаны после того, когда мой товарищ, заведомо доброжелательный читатель рукописи, сказал мне:
— Две теории, конечно, существуют, это ты заметил тонко, но только Эйнштейн и Дебай велики по-разному. Я бы на твоем месте это подчеркнул.
Правильный совет, подчеркиваю: Дебай, один из выдающихся физиков XX века, существенно уточнил теорию теплоемкости, созданную Эйнштейном, оказав этим огромную услугу физике твердого тела. А Эйнштейн — это Эйнштейн. Он не «один из», он гений, оказавший существенное влияние на развитие мировой цивилизации. Теплоемкостью твердого тела он тоже занимался...
НУЛЕВЫЕ КОЛЕБАНИЯ
Вначале о термине «нулевые колебания». Речь идет о тех колебаниях атомов кристаллической решетки, которые происходят и тогда, когда температура кристалла становится равной нулю. Они происходят и при иной, более высокой температуре, одновременно с обычными, классическими колебаниями, которые при нулевой температуре должны замереть. Классические замирают, а нулевые, или квантовые, остаются в чистом виде. Они не чувствительны к температуре! Они неуничтожаемы! Они — непременный признак жизни кристалла.
Если читателю совершенно неизвестны элементарные квантовые представления, буду его просить на начальном этапе наших рассуждений просто поверить мне, а я буду добросовестным и злоупотреблять доверием не стану. Впрочем, в очерке о теории Эйнштейна и Дебая я уже молчаливо пользовался доверием читателя, обсуждая свойства квантового маятника.
Здесь мне надо воспользоваться законом, который в конце 20-х годов сформулировал один из создателей квантовой механики немецкий физик Вернер Гейзенберг. Этот закон часто называют «принципом неопределенности». Речь идет вот о чем. Согласно принципу неопределенности для какой-либо частицы нельзя одновременно абсолютно точно определить координату х и импульс р х , направленный вдоль оси х . И та, и другая величины могут быть найдены с некоторой неточностью, при этом произведение этих неточностей обязательно превосходит величину постоянной Планка h , деленную на 2π:
∆x .∆р х≥ h/ 2π = ђ
Откуда следует это утверждение? Оно — изначальный, фундаментальный закон природы, которая устроена так, а не иначе. Оно, говоря философскими терминами, отражение объективной реальности. Вопрос «откуда» в данном случае задавать не следует, как не следовало спрашивать, почему энергия маятника квантуется. Впрочем, и принцип неопределенности, и квантование энергии маятника — это две стороны одного и того же закона природы. И Планк, и Эйнштейн, и Гейзенберг потому и велики, что сумели, наблюдая природу, подсмотреть или выпытать у нее фундаментальные законы, которые природа соблюдает. Или, быть может, догадаться о них, почувствовать, что они должны существовать.
То обстоятельство, что импульс атома в узле кристаллической решетки, т. е. в той позиции, где в соответствии со структурой кристалла атом расположен, не может быть равен нулю (потому что нуль — величина точная, а импульс может определяться с некоторой неточностью!), означает, что атом должен двигаться, а так как факт существования кристалла означает, что атом должен находиться неподалеку от узла решетки и, следовательно, ему не позволено смещаться на неограниченные расстояния, то его движение должно быть колебательным.
Итак, один из непременных признаков жизни кристалла — нулевые колебания составляющих его атомов. Нам, живущим в мире «нормальных условий» и «классических» проявлений законов природы, легко воспринять факт существования тепловых колебаний: более высокая температура — колебания активнее, при определенной температуре колебания могут стать настолько активными, что кристалл будет вынужден расплавиться. Тепловые колебания — еще со школьных лет явление настолько привычное, что кажется понятным и тогда, когда истинного понимания нет. Привычное, как правило, не вызывает вопросов, а, следовательно, молчаливо предполагается понятным. А вот нулевые колебания — за пределами привычного. Приблизимся к ним, попытаемся освоиться с ними, оценить величины, которые характеризуют этот вид колебаний.
Вначале о частоте нулевых колебаний. Здесь все ясно: она та же, что и при тепловых колебаниях. Иной она быть не может, так как вне зависимости от причины, вызывающей колебания, атом колеблется в определенной среде, обладающей определенными свойствами. Характеристики среды и атома и определяют частоту его колебаний. Эту частоту легко вычислить, так как ранее мы уже находили τ 0:
ν 0 = 1/ τ 0≈ ( аЕ/т ) 1/2 .
Теперь об энергии нулевых колебаний W н . Как следует из квантовой механики (поверьте!),
Видимо, читатель хочет спросить: где источник этой энергии нулевых колебаний, которые существуют всегда, пока кристалл есть кристалл, за счет какого горючего она сохраняется? Сегодня не следует этого спрашивать! Нет такого горючего! Эта энергия — необходимое условие существования вещества, ее нельзя позаимствовать у данного вещества и перенести в другое. Философ, со свойственной ему склонностью к трудным словам, сказал бы так: она — непременный атрибут материи, она — форма существования материи, она существует, поскольку существует материя. Мы уже не первый раз встречаемся с тем, что не любая фраза, завершающаяся вопросительным знаком, формулирует вопрос, на который можно и нужно отвечать. Вот так! А вот вопрос о том, велика или мала величина энергии W н (разумеется, по сравнению с какой-либо иной характерной энергией кристалла), — это вопрос! Его следует задать, и на него следует ответить.
Для различных кристаллов величина энергии нулевых колебаний, естественно, оказывается различной в меру отличия величины ν 0. Изменяется она, однако, в не очень широком интервале значений. Например, для кристалла водорода, который плавится при Т = 14 К, энергия W н ≈ 10 -14эрг, а для кристалла золота, который плавится при температуре почти в сто раз более высокой ( Т = 1336 К), энергия
W н ≈ 3,5• 10 -14эрг. Обладая близкими энергиями нулевых колебаний, эти кристаллы очень существенно отличаются своими характеристиками, например энергиями связи между атомами. Эти энергии известны: W н 2 ≈ 10 -14эрг, W Au ≈ 10 -12эрг. Если сравнить энергии нулевых колебаний с энергиями связи, то окажется, что в случае золота энергия нулевых колебаний составляет всего около трех процентов от энергии связи, а в случае водорода они очень близки. Так как энергия нулевых колебаний от температуры не зависит, а энергия тепловых колебаний с температурой возрастает, то должна существовать некоторая граничная температура Т Г , ниже которой главенствуют нулевые, а выше — тепловые колебания. Величина этой температуры может быть определена из условия
Читать дальшеИнтервал:
Закладка: