Роджер Пенроуз - Новый ум короля: О компьютерах, мышлении и законах физики
- Название:Новый ум короля: О компьютерах, мышлении и законах физики
- Автор:
- Жанр:
- Издательство:Едиториал УРСС
- Год:2003
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Роджер Пенроуз - Новый ум короля: О компьютерах, мышлении и законах физики краткое содержание
Монография известного физика и математика Роджера Пенроуза посвящена изучению проблемы искусственного интеллекта на основе всестороннего анализа достижений современных наук. Возможно ли моделирование разума? Чтобы найти ответ на этот вопрос, Пенроуз обсуждает широчайший круг явлений: алгоритмизацию математического мышления, машины Тьюринга, теорию сложности, теорему Геделя, телепортацию материи, парадоксы квантовой физики, энтропию, рождение Вселенной, черные дыры, строение мозга и многое другое.
Книга вызовет несомненный интерес как у специалистов гуманитарных и естественнонаучных дисциплин, так и у широкого круга читателей.[1]
Новый ум короля: О компьютерах, мышлении и законах физики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
А что можно сказать по поводу низкоэнтропийной ядерной энергии изотопа урана-235, который используется в ядерных реакторах? Она имеет своим источником не само Солнце (хотя вполне и могла быть связана с Солнцем на некоторой стадии), а какие-то другие звезды, которые взорвались много миллиардов лет назад во время вспышек сверхновых. В действительности, этот материал образовался в результате большого числа таких вспышек. Он рассеялся в пространстве после взрыва, часть его случайно соединилась (под воздействием Солнца) и обеспечила Землю тяжелыми элементами, включая и весь запас урана-235 на ней. Каждое ядро, с его низкоэнтропийным запасом энергии, возникло в результате грандиозного ядерного процесса, происходившего во время вспышки сверхновой. Этот взрыв, в свою очередь, был следствием гравитационного коллапса [175]звезды, которая была слишком массивна, чтобы сдерживать этот коллапс одними только силами теплового давления. После такого коллапса и последующего взрыва обычно остается только небольшое ядро — возможно, в виде так называемой нейтронной звезды (подробнее о них чуть позже!). Эта звезда должна была получиться в результате гравитационного сжатия рассеянного газового облака, и большая часть ее исходного вещества — включая и наш уран-235 — должна была быть выброшена обратно в космическое пространство. При этом, однако, благодаря гравитационному сжатию, в целом произошел колоссальный выигрыш в энтропии, заключенной в ядре оставшейся нейтронной звезды. И снова именно гравитация окончательно все расставила по местам, конденсируя (на последних этапах — стремительно) рассеянный газ в нейтронную звезду.
Таким образом напрашивается вывод, что вся та удивительно низкая энтропия, которую мы обнаруживаем вокруг себя — и которая составляет наиболее загадочную сторону второго начала термодинамики — должна быть приписана тому, что огромный выигрыш в энтропии может быть получен в процессе гравитационного сжатия рассеянного газа в звезды. А откуда взялся весь этот рассеянный газ? Здесь для нас важно, что в самом начале этот газ был рассеянным , благодаря чему человечество было обеспечено огромным запасом низкой энтропии, которого нам хватало до сих пор и хватит еще на продолжительный период в будущем.
Именно возможность собирания этого газа в гравитационные сгустки и дала нам второе начало термодинамики. Более того, эти сгустки не просто послужили основанием второго начала, но дали нечто намного более точное и определенное, чем простое утверждение: «Энтропия мира вначале была очень низкой». Ведь энтропия могла быть дана нам низкой и многими другими способами, например, в ранней вселенной мог бы иметь место космологический «явный порядок» совсем другого рода, чем тот, с которым мы сталкиваемся в действительности.
(Представьте себе, что ранняя вселенная была бы правильным додекаэдром — как это могло видеться Платону — или имела бы какую-нибудь другую самую невероятную геометрическую форму. Это был бы, конечно, самый настоящий «явный порядок», но совсем не тот, который мы ожидали бы обнаружить в действительной ранней вселенной!) Мы должны разобраться в том, откуда взялся весь этот рассеянный газ, для чего нам необходимо обратиться к существующим космологическим теориям.
Космология и Большой взрыв
Наша Вселенная на всех масштабах, доступных для наблюдений с помощью самых мощных оптических и радиотелескопов, оказывается в целом довольно однородной; и, что еще более впечатляет, она расширяется. При этом, чем большее расстояние разделяет нас и удаленные объекты — галактики (или совсем далекие квазары), тем с большей скоростью эти объекты удаляются от нас. Все выглядит так, как будто сама Вселенная родилась в результате гигантского взрыва, который принято называть Большим взрывом , имевшим место несколько десятков миллиардов лет назад [176]. Убедительным свидетельством в пользу однородности Вселенной и существования Большого взрыва оказалось открытие чернотельного фонового излучения . Это тепловое излучение, состоящее из фотонов, не имеющих явного источника и движущихся совершенно хаотично, имеет температуру 2 , 7° по абсолютной шкале ( 2 , 7 К ), т. е. - 270 , 3° Цельсия или 454 , 4° ниже нуля по Фаренгейту. И хотя кажется, что эта температура очень низка (а так оно, в действительности, и есть!), это излучение представляет собой остаток вспышки самого́ Большого взрыва! Из-за колоссального расширения, которое испытала Вселенная с момента Большого взрыва, начальный пылающий сгусток вещества распределился впоследствии по гигантскому объему. Температура Большого взрыва намного превышала все мыслимые значения, с которыми мы имеем дело, но из-за расширения она понизилась до той совершенно ничтожной величины, которую чернотельное фоновое излучение имеет сегодня.
Впервые существование фонового излучения было теоретически предсказано американским физиком и астрономом русского происхождения Георгием Гамовым в 1948 году, на основе общепринятой ныне теории Большого взрыва. А в 1965 году Пензиас и Вильсон впервые (и совершенно случайно) обнаружили его.
Я собираюсь задать вопрос, который обычно многих озадачивает. Если все далекие галактики во Вселенной удаляются от нас, не означает ли это, что мы сами занимаем какое-то особое центральное положение во Вселенной? Оказывается, нет! Точно такое же разбегание наблюдалось бы и из любого другого места во Вселенной. В больших масштабах расширение Вселенной однородно и все положения во Вселенной совершенно равноправны.
Часто это положение иллюстрируют с помощью надуваемого шара (рис. 7.8).
Рис. 7.8.Расширяющаяся вселенная очень напоминает поверхность надуваемого шара. Все галактики удаляются друг от друга
Пусть пятнышки на шаре изображают различные галактики, а сама двумерная поверхность шара — все трехмерное пространство вселенной. Ясно, что относительно произвольно выбранной точки на шаре все остальные точки удаляются. В этом смысле все точки шара равноправны. Точно так же, наблюдая из любой выбранной нами галактики, мы обнаружим изотропное удаление всех остальных галактик.
Раздувающийся шар дает хорошее представление об одной из трех общепринятых моделей вселенной, называемых моделями Фридмана — Робертсона — Уокера ( ФРУ), а именно: пространственно замкнутой ФРУ-модели с положительной кривизной . В двух других ФРУ-моделях (с нулевой и отрицательной кривизной) вселенная расширяется подобным же образом, но вместо пространства конечного объема, которое изображает шар, мы имеем бесконечную вселенную с бесчисленным множеством галактик.
Читать дальшеИнтервал:
Закладка: