Роджер Пенроуз - Новый ум короля: О компьютерах, мышлении и законах физики
- Название:Новый ум короля: О компьютерах, мышлении и законах физики
- Автор:
- Жанр:
- Издательство:Едиториал УРСС
- Год:2003
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Роджер Пенроуз - Новый ум короля: О компьютерах, мышлении и законах физики краткое содержание
Монография известного физика и математика Роджера Пенроуза посвящена изучению проблемы искусственного интеллекта на основе всестороннего анализа достижений современных наук. Возможно ли моделирование разума? Чтобы найти ответ на этот вопрос, Пенроуз обсуждает широчайший круг явлений: алгоритмизацию математического мышления, машины Тьюринга, теорию сложности, теорему Геделя, телепортацию материи, парадоксы квантовой физики, энтропию, рождение Вселенной, черные дыры, строение мозга и многое другое.
Книга вызовет несомненный интерес как у специалистов гуманитарных и естественнонаучных дисциплин, так и у широкого круга читателей.[1]
Новый ум короля: О компьютерах, мышлении и законах физики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Давайте посмотрим, какое отношение имеет теория сильного ИИк вопросу о телепортации. Мы предположим, что где-то между двумя планетами располагается ретрансляционная станция, на которой полученная информация некоторое время хранится перед тем, как быть отправленной к месту своего назначения. Для удобства эта информация записывается не в человеческой форме, а в каком-нибудь электронном или магнитном устройстве. Будет ли человеческое «сознание» присутствовать в этом устройстве? Приверженцы сильного ИИпостарались бы убедить вас в том, что это будет именно так. Ведь в конечном счете, сказали бы они вам, на любой вопрос, который мы решили бы задать путешественнику, могло бы, в принципе, ответить и это устройство — если «просто» сымитировать соответствующую функцию его мозга. Устройство располагало бы всей необходимой информацией, и дело стало бы только за вычислениями. А если устройство отвечает на вопросы в точности также, как если бы это был путешественник, то (с точки зрения теста Тьюринга!) оно им и является . В качестве основы для такого вывода здесь опять выступает известное утверждение сторонников сильного ИИ: для явлений, связанных с умственной деятельностью, «железо» не имеет никакого значения. Это утверждение кажется мне неправомочным. Оно, в свою очередь, основывается на представлении о мозге (или разуме) как о цифровом компьютере. И подразумевает, что нет каких-то особых физических процессов, приводящихся в действие, когда человек думает, которые могли бы требовать для своей реализации ту конкретную физическую (биологическую, химическую) структуру, которой обладает мозг.
Естественно, проповедники сильного ИИбудут настаивать на том, что единственное предположение, которое при этом вводится, касается универсальной возможности численного моделирования любого физического процесса. Я более чем уверен, что подавляющее большинство физиков, опираясь на современное состояние физической науки, сочло бы такое предположение совершенно оправданным. В следующих главах я представлю свои собственные доводы в пользу противоположной точки зрения (а также подготовлю почву, чтобы объяснить, почему я думаю, что делается некое предположение). Но давайте на мгновение примем (широко распространенную) точку зрения, согласно которой все относящиеся к предмету дискуссии физические процессы допускают численное моделирование. Тогда единственным (если не принимать во внимание вопросы о времени и ресурсах, затраченных на вычисления) реальным предположением будет следующее «операционалистское» предположение: если нечто действует в точности, как существо, обладающее осознанным восприятием, то мы должны считать, что оно себя этим существом и «чувствует».
Точка зрения теории сильного ИИсостоит в том, что, рассматривая «только» вопрос, относящийся к «железу», любые физические процессы, имеющие отношение к работе мозга, в обязательном порядке могут быть промоделированы с помощью соответствующего преобразующего «софта». Если мы принимаем операционалистскую точку зрения, то тогда этот вопрос будет состоять в эквивалентности универсальных машин Тьюринга, в том, что такие машины способны выполнять любой алгоритм, — а также в справедливости предположения об алгоритмической природе деятельности мозга. И теперь самое время коснуться этих интригующих и важных понятий более подробно.
Глава 2
Алгоритмы и машины Тьюринга
Основы алгоритмов
Как точно определить понятие алгоритма, или машины Тьюринга, или универсальной машины Тьюринга? Почему эти понятия играют одну из главных ролей в современном представлении о «мыслящем устройстве»? Есть ли какие-нибудь абсолютные ограничения на принципиальные возможности использования алгоритмов? Для того чтобы ответить на эти вопросы, нам придется разобраться в деталях, что представляют собой алгоритм и машины Тьюринга.
В дальнейших рассуждениях я буду иногда прибегать к математическим выражениям. Вероятно, некоторых читателей эти выкладки напугают и даже заставят отложить книгу в сторону. Если вы как раз такой читатель, то я прошу вашего снисхождения и рекомендую вам последовать совету, данному мной в Обращении к читателю вначале книги! Доказательства, которые здесь встретятся, не потребуют владения математическим аппаратом, выходящим за пределы школьного курса, но чтобы в них детально разобраться, все же понадобятся интеллектуальные усилия. На самом деле, большинство рассуждений изложено весьма подробно, и если внимательно им следовать, можно добиться глубокого понимания. Однако, даже беглый просмотр доказательств позволяет ухватить основную идею. С другой стороны, если вы являетесь экспертом в этой области, то я опять вынужден принести свои извинения. Но я осмелюсь предположить, что даже в этом случае вам будет небесполезно ознакомиться с моими рассуждениями, в которых почти наверняка найдется что-то интересное и для вас.
Слово «алгоритм» происходит от имени персидского математика IX века Абу Джафара Мухаммеда ибн Мусы аль-Хорезми, написавшего около 825 года н. э. руководство по математике « Kitab al-jabr wa’l-muqa-bala» , которое оказало значительное влияние на математическую мысль того времени. Современное написание «алгоритм», пришедшее на смену более раннему и точному «алгоризм», своим происхождением обязано, скорее всего, ассоциации со словом «арифметика» [39]. (Примечательно, что и слово «алгебра» происходит от арабского al-jabr , фигурирующего в названии вышеупомянутой книги.)
Примеры алгоритмов были, однако, известны задолго до появления книги аль-Хорезми. Один из наиболее известных — алгоритм Евклида — процедура отыскания наибольшего общего делителя двух чисел, восходит к античности (примерно 300 лет до н. э.). Давайте посмотрим, как он работает. Возьмем для определенности два числа, скажем, 1365и 3654. Наибольшим общим делителем двух чисел называется самое большое натуральное число, на которое делится каждое из этих чисел без остатка. Алгоритм Евклида состоит в следующем. Мы берем одно из этих чисел, делим его на другое и вычисляем остаток: так как 1365входит дважды в 3654, в остатке получается 3654 ―
2 х 1365 = 924.
Далее мы заменяем наши два исходные числа делителем ( 1365) и полученным остатком ( 924), соответственно, производим с этой парой ту же самую операцию и получаем новый остаток:
1365 — 924 = 441.
Для новой пары чисел — а именно, 924и 441, — получаем остаток 42. Эту процедуру надо повторять до тех пор, пока очередная пара чисел не поделится нацело. Выпишем эту последовательность:
Читать дальшеИнтервал:
Закладка: