Роджер Пенроуз - Новый ум короля: О компьютерах, мышлении и законах физики
- Название:Новый ум короля: О компьютерах, мышлении и законах физики
- Автор:
- Жанр:
- Издательство:Едиториал УРСС
- Год:2003
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Роджер Пенроуз - Новый ум короля: О компьютерах, мышлении и законах физики краткое содержание
Монография известного физика и математика Роджера Пенроуза посвящена изучению проблемы искусственного интеллекта на основе всестороннего анализа достижений современных наук. Возможно ли моделирование разума? Чтобы найти ответ на этот вопрос, Пенроуз обсуждает широчайший круг явлений: алгоритмизацию математического мышления, машины Тьюринга, теорию сложности, теорему Геделя, телепортацию материи, парадоксы квантовой физики, энтропию, рождение Вселенной, черные дыры, строение мозга и многое другое.
Книга вызовет несомненный интерес как у специалистов гуманитарных и естественнонаучных дисциплин, так и у широкого круга читателей.[1]
Новый ум короля: О компьютерах, мышлении и законах физики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Помимо небесной механики и поведения запущенных тел (камней, пуль, ядер, и т. д.), что можно рассматривать как ее частный случай, а также изучения простых систем, содержащих небольшое число частиц, — основные методы, использовавшиеся ньютоновской механикой, очевидно, не могут быть вообще отнесены к разряду «детерминистско-предсказуемых» в том смысле, о котором мы говорили выше. Общую ньютоновскую схему используют скорее для построения моделей, изучение которых позволяет делать выводы о поведении системы в целом. Некоторые точные следствия из законов движения, такие, как законы сохранения энергии, импульса и углового момента, действительно выполняются на любых масштабах. Кроме того, существуют статистические свойства, которые можно комбинировать с динамическими законами, управляющими отдельными частицами, и использовать их для общего прогнозирования поведения системы. (См. обсуждение термодинамики в главе 7; эффект расплывания в фазовом пространстве, рассмотрением которого мы занимались выше, находится в достаточно тесной взаимосвязи со вторым началом термодинамики — и при соблюдении надлежащей осторожности эти идеи действительно можно использовать для прогнозирования.) Искусно проделанное самим Ньютоном вычисление скорости звука в воздухе (слегка подправленное столетие спустя Лапласом) — хороший тому пример. Но весьма редко случается, чтобы детерминизм, присущий ньютоновской (или, в более широком смысле, гамильтоновой) динамике, реально использовался на практике.
Эффект расплывания начальной области в фазовом пространстве приводит к еще одному замечательному следствию. Только подумайте: ведь он свидетельствует о том, что классическая механика, на самом деле, не в состоянии адекватно описать наш с вами мир! Я несколько преувеличиваю — но не так уж сильно. Классическая механика может достаточно точно описывать поведение жидких тел — главным образом газов, хотя (с приемлемой степенью точности) и собственно жидкостей — в том случае, когда интерес представляют общие «усредненные» свойства систем частиц; но она испытывает затруднения при попытке объяснить структуру твердых тел, которая отличается более высокой организацией. Проблемой здесь становится невозможность описать феномен сохранения твердым телом своей формы несмотря на то, что оно состоит из мириадов точечноподобных частиц, структура относительного расположения которых постоянно нарушается из-за расплывания начальной области в фазовом пространстве. Как мы теперь знаем, для того, чтобы разобраться в строении твердых тел, необходима квантовая теория, поскольку квантовые эффекты могут каким-то образом предотвратить расплывание портрета системы в фазовом пространстве. Это — весьма важный вопрос, к которому мы еще вернемся в дальнейшем (см. главы 8 и 9).
Затронутая нами тема имеет не менее важное значение и для вопроса о построении «вычислительной машины». Эффект расплывания в фазовом пространстве относится к разряду явлений, которые необходимо контролировать. Нельзя позволить слишком сильно расплываться той области фазового пространства, которая соответствует «дискретному» состоянию вычислительного устройства (такой, например, как описанная выше область R 0 ). Напомним, что даже в «бильярдном компьютере» Фредкина— Тоффоли требовались некоторые специально вводимые извне твердые стенки , необходимые для правильной работы компьютера. Объяснить «цельность» объекта, состоящего из множества частиц, можно в действительности только с помощью квантовой механики. Создается впечатление, что даже «классическая» вычислительная машина должна заимствовать некоторые принципы из квантовой физики — иначе она просто не сможет работать эффективно!
Электромагнитная теория Максвелла
В ньютоновской картине мира мы представляем, что крохотные частицы влияют друг на друга с помощью сил, действующих на расстоянии, причем если частицы не совсем точечные, то они способны отскакивать друг от друга в результате прямого физического контакта. Как уже упоминалось раньше (Глава 5. «Механистический мир динамики Ньютона»), электрические и магнитные силы (которые были известны еще с античных времен и впервые подробно изучены Уильямом Гильбертом в 1600 году и Бенджамином Франклином в 1752 году) действуют аналогично гравитационным силам, поскольку также обратно пропорциональны квадрату расстояния — хотя обе представляют собой скорее силы отталкивания, чем притяжения, действуя в соответствии с принципом «подобное отталкивает подобное»; а вместо массы мерой интенсивности их воздействия служит электрический заряд и сила магнитного полюса, соответственно. На этом уровне не существует никаких трудностей, которые препятствовали бы включению электричества и магнетизма в ньютоновскую схему. Поведение света может быть сравнительно легко описано в общем виде с позиций ньютоновской механики (хотя определенные проблемы при этом все же возникают): либо путем рассмотрения света как субстанции, состоящей из отдельных частиц («фотонов», как теперь их принято называть); либо с помощью представления его в виде волнового процесса, распространяющегося в некоторой среде (в последнем случае эту среду — «эфир» — следует считать состоящей из отдельных частиц).
То, что движущиеся электрические заряды могут создавать магнитные силы, вызывает некоторые дополнительные затруднения, но не разрушает целиком всю ньютонианскую схему. Многие математики и физики (в том числе Гаусс) предлагали системы уравнений для описания эффектов, создаваемых движущимися электрическими зарядами. В рамках общей ньютонианской схемы эти уравнения казались вполне удовлетворительными. Первым, кто бросил серьезный вызов «ньютонианской» картине мира, был, по-видимому, великий английский физик-экспериментатор Майкл Фарадей (1791–1867).
Чтобы понять суть этого вызова, необходимо прежде всего разобраться в смысле термина физическое поле . Начнем с магнитного поля. Большинству читателей случалось наблюдать за поведением железных опилок, рассыпанных на листке бумаги, который положили поверх магнита. Железные опилки поразительным образом выстраиваются вдоль так называемых «магнитных силовых линий». Представим себе, что силовые линии присутствуют в пространстве, даже если нет железных опилок. Эти силовые линии и образуют то, что мы называем магнитным полем . В каждой точке пространства это «поле» ориентировано в определенном направлении, а именно — в направлении силовой линии, проходящей через данную точку. В действительности, мы имеем в каждой точке пространства вектор , т. е. магнитное поле является примером векторного поля. (Мы можем сравнить магнитное поле с гамильтоновым векторным полем, которое было рассмотрено нами в предыдущем разделе, но теперь мы имеем векторное поле в обычном, а не фазовом пространстве.) Точно так же и тела, несущие электрический заряд, оказываются окруженными полем, только несколько иного рода, которое известно под названием электрического поля ; а любое массивное тело создает вокруг себя так называемое гравитационное поле . Все это — векторные поля в обычном пространстве.
Читать дальшеИнтервал:
Закладка: