Манжит Кумар - Квант. Эйнштейн, Бор и великий спор о природе реальности

Тут можно читать онлайн Манжит Кумар - Квант. Эйнштейн, Бор и великий спор о природе реальности - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Квант. Эйнштейн, Бор и великий спор о природе реальности
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.7/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Манжит Кумар - Квант. Эйнштейн, Бор и великий спор о природе реальности краткое содержание

Квант. Эйнштейн, Бор и великий спор о природе реальности - описание и краткое содержание, автор Манжит Кумар, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

     Однажды, когда Чарли Чаплина и Альберта Эйнштейна окружила восторженная толпа, Чаплин заметил: “Меня приветствуют потому, что меня понимают все, а вас — потому, что не понимает никто”. С тех пор наука стала еще менее доступной пониманию публики. Английский журналист рассказывает о проблемах, занимавших физиков первой половины XX века, искусно соединяя описание человеческих черт “небожителей” — авторов квантовой теории — с рассказом о трудной, но веселой науке, которую они творили. Что получилось? Биография идеи, которая читается как триллер. Путеводитель по парадоксальному миру. Научно-популярная книга, которая сбивает с толку и дает почувствовать себя почти гением.

Квант. Эйнштейн, Бор и великий спор о природе реальности - читать онлайн бесплатно полную версию (весь текст целиком)

Квант. Эйнштейн, Бор и великий спор о природе реальности - читать книгу онлайн бесплатно, автор Манжит Кумар
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В Копенгагене Паули не только помогал Бору, но и тратил много времени, пытаясь ответить на вопрос, что означает “аномальный” эффект Зеемана — особенность атомного спектра, которую не удавалось объяснить в рамках модели Бора — Зоммерфельда. Если атом поместить в сильное магнитное поле, в его спектре будут видны расщепленные линии. Достаточно быстро Лоренц показал, что, согласно классической физике, расщепленная линия должна быть дуплетом или триплетом. Это явление, известное как “нормальный” эффект Зеемана, модель атома Бора объяснить не могла 21. К счастью, положение спас Зоммерфельд. Он ввел еще два квантовых числа, и подправленный квантовый атом справился с задачей. Пришлось ввести несколько новых правил, управляющих прыжками электронов с одной орбиты (или энергетического уровня) на другую. Для их формулировки потребовались три “квантовых числа” п, k и т: первое описывает размер орбиты, второе — ее форму, а третье — ориентацию в пространстве относительно внешнего электрического или магнитного поля. Но победу праздновали недолго. Оказалось, что расщепление красной α-линии водорода меньше, чем предсказывала теория. Положение стало совсем скверным, когда было установлено, что некоторые спектральные линии расщепляются в квартет или появляется даже больше новых линий, а не две или три, как ожидалось.

Это явление назвали аномальным эффектом Зеемана, поскольку его нельзя было объяснить ни в рамках классической физики, ни с помощью существовавших квантовых моделей. Но фактически “аномальное” расщепление встречается гораздо чаще “нормального”. Для Паули это было сигналом, указывающим на то, что “где-то глубоко спрятана несостоятельность известных на данный момент теоретических принципов” 22. Он решил разобраться в этой плачевной ситуации, но найти выход не удавалось. “Я до сих пор брожу в потемках”, — пожаловался Паули Зоммерфельду в июне 1923 года 23. Позднее он признался, что задача целиком поглотила его, и некоторое время он был в отчаянии.

Однажды сотрудник института встретил Паули, бродившего по Копенгагену:

— Вы выглядите очень несчастным.

— Как можно выглядеть счастливым, если думаешь об аномальном эффекте Зеемана?! 24

Правила, специально придуманные для объяснения сложной структуры атомных спектров, Паули не устраивали. Он хотел отыскать более глубокое, фундаментальное описание этого явления. Паули считал, что разгадка может быть связана с гипотезой, на основании которой Бор построил свою теорию заполнения периодической таблицы. Правильно ли она описывает расположение электронов внутри атомов?

В 1922 году считалось, что в согласии с моделью Бора — Зоммерфельда электроны атома движутся внутри трехмерных “оболочек”. Это не реальные физические оболочки, а наборы энергетических атомных уровней, на которых группируются электроны. При построении новой модели атома с электронными оболочками путеводной нитью для Бора была стабильность благородных газов: гелия, неона, аргона, криптона, ксенона и радона 25. Их атомные номера таковы: 2, 10, 18, 36, 54 и 86. Для ионизации атома любого благородного газа (удаления одного из его электронов и образования положительного иона) требуется сравнительно большая энергия. Учитывая, что атомы этих элементы еще и плохо взаимодействуют с другими атомами и с трудом образуют химические соединения, предполагалось, что электронные конфигурации этих элементов очень устойчивы и состоят из замкнутых оболочек.

Химические свойства благородных газов разительно отличаются от свойств элементов, занимающих в периодической таблице места перед ними, — от свойств водорода и галогенов: фтора, хлора, брома, йода и астата (их атомные номера равны, соответственно, 1, 9, 17, 35, 53 и 85). Все эти элементы легко образуют химические соединения. В отличие от инертных в химическом отношении благородных газов водород и галогены легко вступают в реакции с другими атомами, приобретают один дополнительный электрон и заполняют таким образом единственную свободную вакансию на своей внешней электронной оболочке. В результате получается отрицательный ион, имеющий набор полностью заполненных, или “замкнутых”, оболочек, а его электронная конфигурация становится такой же стабильной, как и у благородных газов. Зеркальным отображением галогенов являются щелочи: литий, натрий, калий, рубидий, цезий и франций. При образовании соединений они легко теряют электрон, становясь положительными ионами, у которых распределение электронов такое же, как у благородных газов.

Химические свойства этих трех групп элементов — одно из свидетельств, основываясь на которых Бор предположил, что атом каждого из элементов в ряду периодической таблицы получается из атома предыдущего элемента путем добавления одного электрона в его внешнюю электронную оболочку. Каждый ряд должен заканчиваться благородным газом с полностью заполненной внешней оболочкой. Только электроны незаполненных оболочек, которые называют валентными, принимают участие в химических реакциях. Поэтому атомы с одним и тем же числом валентных электронов обладают сходными химическими свойствами и попадают в один и тот же столбец периодической таблицы. У галогенов на внешней оболочке семь электронов. Требуется всего один электрон, чтобы эта оболочка стала замкнутой, то есть такой же, как у благородных газов. С другой стороны, у щелочей всего один валентный электрон.

Именно это и услышал Паули на лекциях Бора в Геттингене в июне 1922 года. Зоммерфельд назвал оболочечную модель “самым значительным с 1913 года шагом вперед в понимании структуры атомов” 26. С помощью математики удалось восстановить число элементов в каждом из рядов периодической таблицы, то есть найти числа 2, 8, 18,.... а это значит, сказал Зоммерфельд Бору, что “сбылась заветная мечта физиков” 27. Но, по правде говоря, строгого математического обоснования новой модели электронных оболочек не было. Даже Резерфорд говорил Бору, что с трудом “представил себе, как вы пришли к таким выводам” 28. Тем не менее к словам Бора надо было относиться серьезно, особенно после того, как подтвердилось его предсказание, сделанное во время Нобелевской лекции в декабре 1922 года: тогда оказалось, что неизвестный элемент с атомным номером 72 (его назвали гафнием) не принадлежит к группе редкоземельных элементов. Однако в обосновании оболочечной модели Бора не было ни организующего принципа, ни четкого критерия. Это была гениальная импровизация, базирующаяся на экспериментальных данных о химических и физических свойствах элементов. По большей части она позволяла объяснить химические свойства разных групп элементов в периодической таблице. Ее высшим достижением был гафний.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Манжит Кумар читать все книги автора по порядку

Манжит Кумар - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Квант. Эйнштейн, Бор и великий спор о природе реальности отзывы


Отзывы читателей о книге Квант. Эйнштейн, Бор и великий спор о природе реальности, автор: Манжит Кумар. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x