Манжит Кумар - Квант. Эйнштейн, Бор и великий спор о природе реальности
- Название:Квант. Эйнштейн, Бор и великий спор о природе реальности
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Манжит Кумар - Квант. Эйнштейн, Бор и великий спор о природе реальности краткое содержание
Однажды, когда Чарли Чаплина и Альберта Эйнштейна окружила восторженная толпа, Чаплин заметил: “Меня приветствуют потому, что меня понимают все, а вас — потому, что не понимает никто”. С тех пор наука стала еще менее доступной пониманию публики. Английский журналист рассказывает о проблемах, занимавших физиков первой половины XX века, искусно соединяя описание человеческих черт “небожителей” — авторов квантовой теории — с рассказом о трудной, но веселой науке, которую они творили. Что получилось? Биография идеи, которая читается как триллер. Путеводитель по парадоксальному миру. Научно-популярная книга, которая сбивает с толку и дает почувствовать себя почти гением.
Квант. Эйнштейн, Бор и великий спор о природе реальности - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Аномальный эффект Зеемана и недостатки оболочечной модели продолжали волновать Паули, когда подошло к концу время его пребывания в Копенгагене. В сентябре 1923 года Паули вернулся в Гамбург. В следующем году он получил повышение: теперь он был не ассистентом, а приват-доцентом.
Но поскольку до Копенгагена было рукой подать — короткая поездка на поезде, после на пароме через Балтийское море, — он по-прежнему был частым гостем в институте Бора. Паули пришел к выводу, что модель Бора работает только тогда, когда имеется ограничение на число электронов, занимающих данную оболочку. Иначе, в противоречие данным об атомных спектрах, ничто не мешает всем электронам атома находиться в одном и том же стационарном состоянии, на одном и том же энергетическом уровне. В конце 1924 года Паули открыл фундаментальное правило, систематизирующее распределение электронов. Это “принцип запрета”, позволивший теоретически обосновать модель электронных оболочек атома. В построенной эмпирически модели Бора такого обоснования не было.
Отправным пунктом для Паули послужила работа одного аспиранта из Кембриджа. Эдмунд Клифтон Стонер, хотя ему исполнилось уже тридцать пять, еще продолжал под руководством Резерфорда работу над диссертацией, когда в октябре 1924 года в “Философикал мэгэзин” появилась его статья “Распределение электронов по атомным уровням”. Стонер утверждал, что число энергетических состояний, в которых может находиться внешний, или валентный, электрон атома щелочи, равно числу электронов на последней замкнутой оболочке атома того благородного газа, который является первым после атома щелочи в периодической таблице. Например, валентный электрон лития может занимать одно из восьми энергетических состояний — ровно столько, сколько электронов содержится во внешней заполненной оболочке атома неона. Согласно Стонеру, главное квантовое число п определяет электронную оболочку Бора, которую можно полностью заполнить, “замкнуть”, если число электронов на ней будет вдвое больше числа допустимых энергетических состояний.
Если каждому электрону атома ставятся в соответствие квантовые числа n, k и m и каждый набор этих чисел отмечает определенную электронную орбиту (энергетический уровень), то, согласно Стонеру, число возможных энергетических состояний, скажем, при n = 1, 2 и 3 будет соответственно 2, 8 и 18. Для первой оболочки n = 1 , k = 1 и m = 0. Только такие значения могут принимать три квантовых числа при n = 1. Они отвечают энергетическому состоянию (1,1,0). Но, по Стонеру, первая оболочка замкнута, когда она содержит 2 электрона — удвоенное число допустимых энергетических состояний. При n = 2 либо k = 1 и m = 0, либо k = 2, а m = -1, 0, 1. Следовательно, для второй оболочки существуют четыре возможных набора квантовых чисел, которые можно связать с валентным электроном и энергетическим состоянием, в котором он находится. Это состояния (2,1,0), (2,2,-1), (2,2,0) и (2,2,1). Поэтому заполненная оболочка с n = 2 вмещает 8 электронов. Третья оболочка, n = 3, имеет 9 возможных электронных энергетических состояний: (3,1,0), (3,2,-1), (3,2,0), (3,2,1), (3,3,-2), (3,3,-1), (3,3,0), (3,3,1) и (3,3,2) 29. В соответствии с правилом Стонера, максимальное число электронов на третьей оболочке равно 18.
Паули видел октябрьский номер “Философикал мэгэзин”, однако не обратил внимания на статью Стонера. Но когда он наткнулся на упоминание о ней в предисловии Зоммерфельда к книге “Строение атома и спектры”, то, хотя никогда прежде не был замечен в пристрастии к спорту, побежал в библиотеку 30. Он понял, что при данном значении n число возможных энергетических состояний N, в которых может находиться электрон в атоме, то же, что и число всех возможных значений чисел k и m , и равно оно n 2. Правило Стонера правильно определяло число элементов в данном ряду периодической таблицы. Получался набор чисел 2, 8, 18, 32 и так далее. Но почему число электронов в замкнутой оболочке равно удвоенному значению N, то есть 2 n 2? Ответ, найденный Паули, гласил: электронам в атоме надо приписать четвертое квантовое число.
В отличие от n, k и m, новое квантовое число Паули могло принимать только два значения. Поэтому он назвал его двузначностью ( Zweideutigkeit ). Именно двузначность удваивала число электронных состояний. Если прежде одному энергетическому состоянию однозначно соответствовал набор из трех квантовых чисел n, k и m, то теперь тому же набору соответствовало два энергетических состояния n, k, m, А и n, k, m, В. Эти дополнительные состояния объясняли загадочное расщепление спектральных линий при аномальном эффекте Зеемана. Введенное Паули четвертое “двузначное” квантовое число позволило ему сформулировать принцип запрета, одну из главных заповедей природы: никакие два электрона в атоме не могут иметь один и тот же набор из четырех квантовых чисел.
Химические свойства элемента определяются не полным числом электронов в атоме, а только распределением его валентных электронов. Если бы все электроны в атоме занимали самый низкий энергетический уровень, все элементы были бы равнозначны по химическим свойствам.
Принцип запрета Паули управляет заполнением электронных оболочек в новой модели атома Бора. Он не позволяет всем электронам собраться на самом низком энергетическом уровне. Принцип запрета обосновывает правило, согласно которому элементы заполняют клетки периодической таблицы, и объясняет, почему замкнуты оболочки химически инертных благородных газов. Несмотря на такой успех, в работе “О связи между заполнением групп электронов в атоме и сложной структурой спектров”, вышедшей 21 марта 1925 года в журнале “Цайтшрифт фюр физик”, Паули написал: “Мы не можем более точно обосновать это правило” 31.
Почему требуется четыре, а не три квантовых числа, чтобы определить состояние электрона в атоме, оставалось загадкой. Начиная с работ Бора и Зоммерфельда, считалось, что электрон в атоме, двигаясь по орбите, совершает трехмерное движение. Для описания этого движения необходимо три квантовых числа. Какой физический смысл имеет введенное Паули четвертое число?
Поздним летом 1925 года два голландских аспиранта Сэмюэл Гаудсмит и Джордж Уленбек поняли, что “двузначность” Паули — не просто еще одно квантовое число. В отличие от уже существовавших трех квантовых чисел п, k и т, характеризующих соответственно энергию электрона на орбите, форму орбиты и ее пространственную ориентацию, “двузначность” была свойством самого электрона. Гаудсмит и Уленбек назвали его спином 32. Название выбрано не очень удачно. В нашем воображении оно связывается с вращающимися телами. Но спин электрона — понятие чисто квантовое. Строго обосновав принцип запрета, спин позволил устранить затруднения, сохранявшиеся в теории атомных структур.
Читать дальшеИнтервал:
Закладка: