Игорь Джавадов - Понятная физика
- Название:Понятная физика
- Автор:
- Жанр:
- Издательство:Написано пером
- Год:2014
- Город:Санкт-Петербург
- ISBN:978-5-00071-127-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Игорь Джавадов - Понятная физика краткое содержание
В книге, которую Вы держите, о физике рассказано по-новому. Новый подход, который можно назвать энергетическим, избегает проблем обычного преподавания физики. В классическом преподавании физики видны две проблемы. Во-первых, сложилась вековая традиция преподавать физику не как систему современных знаний о различных видах энергии, а как историю отдельных наблюдений и открытий, не всегда связанных между собой. Вторая проблема вытекает из первой – избыточность терминов. Взять хотя бы электричество. Электричество изучали Ампер, Фарадей, Ом и другие выдающиеся учёные. Вместе с их открытиями в физику вошли такие понятия как электродвижущая сила, разность потенциалов, напряжение и другие авторские термины. Разумеется, мы должны чтить вклад гениев в науку. Но с точки зрения современной физики речь идёт об одной и той же величине, измеряемой в вольтах. Для измерения указанных величин не нужны три разных прибора, достаточно одного вольтметра.
Почему современные авторы до сих пор делают вид, что школьник XXI века не смотрит телевизор, не знает компьютер? Раздел «Электричество» традиционно начинают с рассказа о древних греках, которые полировали янтарь тряпочкой и получали при этом электрические искры. Да, сто лет назад это было новостью для рабочего, принятого без экзаменов на рабфак. Но это неинтересно современному школьнику, который играет на электрогитаре и сам собирает усилитель.
Предлагаемый курс физики основан на понятии энергии, так как главной задачей физики является поиск новых видов энергии. Все согласны, что энергия не вектор. Значит, при выводе уравнений можно обойтись без векторной алгебры. Это делает физику более понятной, так как обычная алгебра намного проще векторной.
Понятная физика - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Роль электричества переоценить невозможно. Все наше оборудование устроено так, чтобы преобразовывать электрическую энергию в работу. Этот выбор объясняется тем, что электрическое поле можно почти мгновенно передать от источника к потребителю. Для этого электрооборудование соединяют проводами с электростанцией, где электрические генераторы производят электроэнергию. Электрическое поле концентрируется в проводах и практически без потерь доставляется к потребителю. Это оказалось настолько удобным, что даже если энергия где-то получается в виде тепла от сжигания топлива или от ядерных реакций, ее сначала преобразуют в электроэнергию, а уже потом распределяют по проводам, которые закольцованы в единую межрегиональную энергосеть. Когда житель Вологды включает люстру, возможно, он потребляет электроэнергию, произведенную на атомной электростанции в Сосновом Бору, или на Среднеуральской тепловой электростанции, или на Красноярской гидроэлектростанции. Единая энергосеть нужна для равномерного распределения электроэнергии по всей стране. Представьте мегаполис Санкт-Петербург, в котором миллион домохозяек зимним утром включает свет, пылесос и телевизор. Если город был бы подключен только к одной электростанции, никакой мирный атом не выдержал бы такой нагрузки. Заметим, в Омске в это время пылесосы уже выключены, потому что наступил обед, в Хабаровске ужинают, а в Анадыре кто-кто уже лег спать. Значит, излишек невостребованной на востоке страны электроэнергии можно перебросить почти со скоростью света на запад и избежать перегрузки в сети. Следует подчеркнуть, что со скоростью света перемещается только электрическое поле. Средняя скорость электронов в проводах составляет доли миллиметра в секунду. Так что на протяжении суток, а то и всей рабочей недели, в каждом регионе трудятся «свои» электроны. Эти местные трудяги выполняют огромную работу под действием электрического поля единой энергосети.
Возникает вопрос, как провода передают электрическое поле, если в нормальном состоянии они электрически нейтральны? Дело в том, что провода изготавливают из металлов, в которых имеется большое количество свободных электронов. Например, в меди, серебре и золоте на каждый атом вещества приходится один свободный электрон. Это огромная величина, учитывая количество атомов в одном кубическом сантиметре (порядка 10 22). В отсутствие внешнего поля свободные электроны хаотически носятся между ядрами вещества. Но если к проводу приложить электрическое поле, свободные электроны устремятся навстречу полю, превращая энергию поля в работу. Упорядоченное перемещение электронов в веществе называют электрическим током, или просто током. Это ток вращает электромотор в пылесосе, кипятит воду в электрочайнике, заставляет сверкать огнями новогоднюю ёлку, в общем, производит работу.
§ 25. Сила тока
Для получения тока нужно иметь электрическое поле. Это поля создают на электростанциях при помощи специальных машин – генераторов. Мы уже изучали работу устройства для преобразования энергии морских волн в электричество. В этой машине имелась малая катушка с током – активатор. Когда в проводе возникает ток, он течет, в основном, по его наружной поверхности. При этом поля электронов складываются, а провод становится источником электрического поля. Неподвижные протоны, которые находятся внутри проволоки, уже не могут компенсировать поле электронов вокруг провода. Если провод намотан на каркас в виде катушки, его поле усиливается многократно.
Катушку с железным сердечником внутри называют электрическим магнитом или электромагнитом. Так сложилось исторически. Люди с незапамятных времен имели дело с магнетитом – природным минералом, способным притягивать к себе железо. В древности из магнетита делали стрелки компаса. После опытов с электричеством выяснилось, что катушка с током тоже притягивает железо. Поэтому такие катушки стали называть электромагнитами, а само явление – электромагнетизмом. Электроны, подвижные источники электрического поля, были открыты значительно позже. Очевидно, внутри кристалла магнетита имеются природные кольцевые цепочки атомов, аналогично виткам провода в катушке. Вдоль этих цепочек атомов по замкнутым траекториям, как ток по виткам обмотки, перемещаются свободные электроны. Их немного, но достаточно, чтобы вокруг минерала постоянно существовало электрическое поле. Это поле вокруг магнетита в древности назвали магнитным. Если образец магнетита нагреть докрасна, он теряет магнитные свойства. Высокая температура разрушает цепочки атомов и магнетит превращается в обычную породу.
Для промышленности нужны мощные поля, сильные токи. Мощное электрическое поле получают, перемещая электроны в генерирующей обмотке промышленного генератора. Для этого обмотку генератора быстро вращают в поле электромагнита при помощи турбины – колеса с лопатками, на которые направляют поток воды или пара. Преимущество таких генераторов в том, что они не зависят от погоды. Управляя частотой вращения турбины, можно получать электрическое поле нужной мощности. Существуют генераторы, в которых вращают электромагнит, а генерирующую обмотку оставляют неподвижной. В любом случае необходимо перемещение витков генерирующей обмотки относительно электромагнита, иначе электроны в обмотке не сместятся и электрическое поле не возникнет.
Работу вращающегося электромагнита можно сравнить с работой насоса, который «перегоняет» своим полем электроны в обмотке генератора. Проникая в обмотку, поле электромагнита перемещает свободные электроны по её виткам. Электроны собираются на одном конце обмотки, который мы назовём отрицательным полюсом. Протоны, связанные в ядрах меди, остаются на месте. Тем не менее, на другом конце обмотки возникает положительный полюс, так как после «вымывания» электронов здесь преобладает заряд протонов. Если потребитель электроэнергии, например, электрочайник, соединить проводами с полюсами генератора, получится замкнутая цепь. Отрицательный полюс генератора будет выталкивать электроны в чайник по одному проводу, а положительный полюс – вытягивать их через другой провод. Отработавшие электроны возвращаются в генератор, который снова перегоняет их к отрицательному полюсу. Возникает электрический ток, который нагревает чайник до кипения (никогда не забывайте наливать воду в электрочайник).
Энергия тока, израсходованная в чайнике, пропорциональна, очевидно, количеству электронов, перенесенных полем через поперечное сечение провода за секунду. Эту величину называют силой тока и обозначают буквой I. Если заряд электрона равен q, а за время t через сечение прошло N электронов, то суммарный заряд равен Q = N q. Тогда сила тока равна:
Читать дальшеИнтервал:
Закладка: