Joaquin Sandalinas - До предела чисел. Эйлер. Математический анализ.

Тут можно читать онлайн Joaquin Sandalinas - До предела чисел. Эйлер. Математический анализ. - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    До предела чисел. Эйлер. Математический анализ.
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.75/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Joaquin Sandalinas - До предела чисел. Эйлер. Математический анализ. краткое содержание

До предела чисел. Эйлер. Математический анализ. - описание и краткое содержание, автор Joaquin Sandalinas, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.

До предела чисел. Эйлер. Математический анализ. - читать онлайн бесплатно полную версию (весь текст целиком)

До предела чисел. Эйлер. Математический анализ. - читать книгу онлайн бесплатно, автор Joaquin Sandalinas
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

F4 = 2 24 + 1 = 2 16+ 1 = 65 536 + 1 = 65 637.

Все они являются простыми числами. Следующее число Ферма выглядит так:

F5 = 2 25 + 1 = 2 32+1 = 4 294 967 296 + 1 = 4 294 967 297.

Было бы логично предположить, что оно, как и предыдущие, является простым. По стандартам того времени более рискованно, хотя и не намного, было выдвинуть гипотезу (как сделал Гольдбах) о том, что все эти числа простые, подтверждая тем самым мнение самого Ферма. Гольдбах сообщил Эйлеру об этой задаче в 1729 году, а в 1732-м тот уже нашел ее решение: F 5— не простое число, а составное:

F5 = 4 294 967 297 = 641 • 6700 417.

Первой реакцией на этот результат было изумление. Ведь чтобы провести факторизацию этого числа, деля его на 2,3,5,7, 11,13 и так далее, продолжая перебирать бесконечную последовательность простых чисел, требовались колоссальные усилия.

ПЬЕР ДЕ ФЕРМА

Ферма был юристом по профессии и занимался математикой исключительно как хобби, за что получил прозвище "король любителей". Он внес решающий вклад в создание аналитической геометрии, а также в развитие теории вероятностей и оптики, изучал отражение и преломление света и отнес эти явления к максимумам и минимумам, заложив таким образом основы дифференциального исчисления. Наибольшую известность Ферма принесли его исследования о теории чисел, в которых ярко проявились его удивительные способности и необычные методы работы. Обычно он не записывал свои рассуждения отдельно, а делал, пока хватало места, пометки на полях книг, которые читал. Всемирной известностью он обязан появлению теоремы, гласящей, что "для n > 2 не существует таких целых положительных чисел х, у, z, не равных нулю, для которых справедливо х n+у n=z n". Она известна как Великая теорема Ферма, и долгое время у нее не было доказательства. Ферма утверждал — хотя, вполне возможно, ошибочно, — что однажды во время чтения он нашел превосходное доказательство, но на полях книги не было достаточно места для его записи. Теорема была доказана в 1995 году Эндрю Уайлсом.

Если же рассмотреть приемы Эйлера подробней можно понять его метод и - фото 10

Если же рассмотреть приемы Эйлера подробней, можно понять его метод и, одновременно с этим, гениальность ученого. Постепенно, следуя по скользкому пути деления, Эйлер пришел к выводу — совсем не простому,— что любой делитель F 5должен иметь вид 64n + 1. Таким образом, ему больше не надо было проверять один за другим все простые делители, а только числа 65 (n = 1), 129 (n = 2), 193 (n = 3) и так далее, вычеркивая те, которые простыми не являлись. При n - 10 подсчеты дают 64 -10 + 1 = 641, что является точным делителем.

На сегодняшний день не найдено ни одного другого простого числа Ферма. Все новые, что нам известны,— это составные числа. Было доказано, что начиная с F 5до F 32— а это огромное количество — нет ни одного простого числа. Но это не означает, что они никогда не будут обнаружены. Вопрос об их существовании — всего лишь гипотеза, а в математике гипотезы считаются верными или ложными, только если находится их доказательство или опровержение.

КРЕЩЕНИЕ ЧИСЛА

Параллельно с работой над числами Ферма и все так же в рамках обширной переписки с Гольдбахом Эйлер дал имя математической константе, которая, как мы уже говорили в предыдущей главе, впоследствии стала основой его исследований по теории чисел: это постоянная е. Впервые она появилась под таким обозначением в одном из писем 1731 года. Вне всяких сомнений, это самая известная постоянная после л. Ее приблизительное значение следующее:

е=2,71828182845904523536028747135266249775724709369995...

Сегодня известно более триллиона знаков е после запятой. Хотя Эйлер дал постоянной имя и использовал ее в самых разных областях, он не был ее первооткрывателем в строгом смысле этого слова: е появилась гораздо раньше, но под другим именем и "в тайне", как мы увидим ниже.

Число е родом из области логарифмов, как подчеркивал Эйлер. Эта связь, которую мы подробнее рассмотрим в приложении 1, ускользала от математиков на протяжении века. В защиту современников Эйлера можно сказать, что постоянная е с течением времени зарекомендовала себя как особенно неуловимая.

Одним из первых к ней приблизился Грегуар де Сен- Венсан (1584-1667), который в 1647 году обнаружил равностороннюю гиперболу, соответствующую уравнению у - 1/x, ее график в декартовой системе координат изображен на этой странице. Сен-Венсан вычислил площадь между 1 и любой другой точкой t на горизонтальной оси говоря современным языком, это площадь криволинейной трапеции между 1 и t.

Таким образом получается что 1 t1xdx lnt и при t е мы имеем Int - фото 11

Таким образом, получается, что

∫ 1 t(1/x)dx = lnt,

и при t = е мы имеем Int - Ine = 1. Следовательно, e равно значению на горизонтальной оси X, для которого площадь, указанная на графике, равна 1. Это определение впоследствии дал ей сам Эйлер, Сен-Венсан же так и не пришел к нему.

Христиан Гюйгенс (1629-1695) тоже не обратил на число е большого внимания, хотя в одном из рассуждений ему пришлось вычислить 17 знаков его десятичного логарифма. Но поскольку он был сконцентрирован на другом вопросе, то также проигнорировал число е.

Не прошел мимо него Якоб Бернулли, хотя он приблизился к е не через логарифмы, а следуя другому, более "земному" пути. В 1683 году Бернулли начал изучать сложные проценты по вкладу капитала. Мы можем проследить за его шагами, используя современную терминологию. Если мы делаем вклад, равный С, под годовой процент i, то в конце года сумма будет равна

C+Ci-C(1 + i).

Если бы проценты подсчитывались два раза в год, а не один, то надо было бы разделить их на 2 и начислять деньги дважды. За один год сумма капитала и процентов стала бы равна

C + Ci/2 + (C + Ci/2)i/2 = C(C + i/2) + C(1 + i/2)i/2 =

= C(1 + i/2)(1 + i/2) = C(1 + i/2) 2

Если повторить эту операцию n раз, то, следуя этой модели, капитал будет равен

C(1 + i/n) n.

При бесконечном повторении этой операции проценты будут начисляться каждое мгновение, и, используя современное понятие предела (независимо от величины i она не имеет значения в данной задаче), мы пришли бы к пределу

lim n→∞(1 + 1/n) n.

При проверке предела необходимо установить, что он существует и что к его значению можно приблизиться при помощи простого вычисления.

n (1 + 1/n) n
1 2
2 2,25
3 2,37037
4 2,44141
5 2,48832
10 2,59374
100 2,70481
1000 2,71692
10000 2,71815
100000 2,71827
1000000 2,71828

Якоб Бернулли без помощи современных вычислительных инструментов дошел до первых строк этой таблицы. Это поразительный результат для математики той эпохи. По его подсчетам, предел был бы между 2 и 3. Сегодня мы знаем, что

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Joaquin Sandalinas читать все книги автора по порядку

Joaquin Sandalinas - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




До предела чисел. Эйлер. Математический анализ. отзывы


Отзывы читателей о книге До предела чисел. Эйлер. Математический анализ., автор: Joaquin Sandalinas. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x