Ричард Фейнман - 9. Квантовая механика II
- Название:9. Квантовая механика II
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 9. Квантовая механика II краткое содержание
9. Квантовая механика II - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Ясно, что этот электрон сможет перейти к другому атому, перенося в новое место отрицательный ион. Мы предположим, что (в точности, как и в случае электрона, «прыгавшего» от протона к протону) электрон может с какой-то амплитудой «прыгать» от атома к его соседям с любой стороны.
Как же описывать такую систему? Что считать разумными базисными состояниями? Если вы вспомните, что мы делали, когда у электрона было только две возможные позиции, вы сможете догадаться. Пусть в нашей цепочке все расстояния между атомами одинаковы, и пусть мы их пронумеруем по порядку, как на фиг. 11.1, а . Одно базисное состояние — когда электрон находится возле атома № 6; другое базисное состояние — когда электрон находится возле № 7, или возле № 8, и т. д.; n -е базисное состояние можно описать, сказав, что электрон находится возле атома № п. Обозначим это базисное состояние | n >. Из фиг. 11.1 ясно, что подразумевается под тремя базисными состояниями:
С помощью этих наших базисных состояний можно описать любое состояние |j> нашего одномерного кристалла, задав все амплитуды < n |j> того, что состояние |j> находится в одном из базисных состояний, т. е. амплитуду того, что электрон расположен близ данного частного атома. Тогда состояние |j> можно записать в виде суперпозиции базисных состояний:
Кроме того, мы хотим еще предположить, что когда электрон находится близ одного из атомов, то имеется некоторая амплитуда того, что он просочится к тому атому, что слева, или к тому, что справа. Возьмем простейший случай, когда считается, что он может просочиться только к ближайшим соседям, а к следующему соседу он сможет дойти в два приема. Примем, что амплитуды того, что электрон перепрыгнет от одного атома к соседнему, равны iA/h (за единицу времени).
Изменим на время обозначения, и амплитуду < n |j>, связанную с n -м атомом, обозначим через С n . Тогда (11.1) будет иметь вид
Если бы вы знали каждую из амплитуд С n в данный момент, то, взяв квадраты их модулей, можно было бы получить вероятность того, что вы увидите электрон, взглянув в этот момент на атом п.
Но что сталось бы чуть позже? По аналогии с изученными нами системами с двумя состояниями мы предлагаем составить гамильтоновы уравнения для этой системы в виде уравнений такого типа:
Первый справа коэффициент Е 0физически означает энергию, которую имел бы электрон, если бы он не мог просачиваться от одного атома к другим. (Совершенно неважно, что мы назовем , Е 0 ; мы неоднократно видели, что реально это не означает ничего, кроме выбора нуля энергии.) Следующий член представляет амплитуду в единицу времени того, что электрон из ( n +1)-й ямки просочится в n -ю ямку, а последний член означает амплитуду просачивания из ( n -1)-й ямки. Как обычно, А считается постоянным (не зависящим от t).
Для полного описания поведения любого состояния |j> надо для каждой из амплитуд С n иметь по одному уравнению типа (11.3). Поскольку мы намерены рассмотреть кристалл с очень большим количеством атомов, то допустим, что состояний имеется бесконечно много, атомы тянутся без конца в обе стороны. (При конечном числе атомов придется специально обращать внимание на то, что случается на концах.) А если количество N наших базисных состояний бесконечно велико, то и вся система наших гамильтоновых уравнений бесконечна! Мы напишем только часть ее:
§ 2. Состояния определенной энергии
Об электроне в решетке мы теперь уже можем узнать очень многое. Для начала попробуем отыскать состояния определенной энергии. Как мы видели в предыдущих главах, это означает, что надо отыскать такой случай, когда все амплитуды меняются с одной частотой, если только они вообще меняются. Мы ищем решение в виде
Комплексное число а n говорит нам о том, какова не зависящая от времени часть амплитуды того, что электроны будут обнаружены возле n -го атома. Если это пробное решение подставить для проверки в уравнения (11.4), то получим
Перед нами бесконечное число уравнений для бесконечного количества неизвестных а n ! Ситуация тяжелая!
Но мы знаем, что надо только взять детерминант... нет, погодите! Детерминанты хороши, когда уравнений два, три или четыре. Но здесь их очень много, даже бесконечно много, и вряд ли от детерминантов будет толк. Нет, лучше попробовать решать эти уравнения прямо. Во-первых, пронумеруем положения атомов; будем считать, что n- йатом находится в х n , а (n+ 1)-й— в х n + 1 . Если расстояние между атомами равно b (как на фиг. 11.1), то х n + 1 =х n +b. Взяв начало координат в атоме номер нуль, можно даже получить х n = nb. Уравнение (11.5) можно тогда переписать в виде
а уравнение (11.6) превратится в
Пользуясь тем, что x n + 1 =x n +b, это выражение можно также записать в виде
Это уравнение немного походит на дифференциальное. Оно говорит, что величина а(х) в точке х n связана с той же физической величиной в соседних точках х n ±b. (Дифференциальное уравнение связывает значения функции в точке с ее значениями в бесконечно близких точках.) Может быть, здесь подойдут методы, которыми мы обычно пользуемся для решения дифференциальных уравнений? Попробуем.
Решения линейных дифференциальных уравнений с постоянными коэффициентами всегда могут быть выражены через экспоненты. Попробуем и здесь то же самое; в качестве пробного решения выберем
Читать дальшеИнтервал:
Закладка: