LibKing » Книги » sci-phys » Ричард Фейнман - 9. Квантовая механика II

Ричард Фейнман - 9. Квантовая механика II

Тут можно читать онлайн Ричард Фейнман - 9. Квантовая механика II - бесплатно полную версию книги (целиком). Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
libking
  • Название:
    9. Квантовая механика II
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.2/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Ваша оценка:

Ричард Фейнман - 9. Квантовая механика II краткое содержание

9. Квантовая механика II - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

9. Квантовая механика II - читать онлайн бесплатно полную версию (весь текст целиком)

9. Квантовая механика II - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Теперь бросим взгляд на систему уравнений нашей новой задачи: на (11.28) плюс такие же уравнения для остальных атомов. Уравнения, куда входят а n с nЈ- 1, решаются форму­лой (11.29) при условии, что k оказывается связанным с Е и постоянной решетки b соотношением

E=E 0 -2Acoskb. (11.30)

Физический смысл этого таков: «падающая» волна с амплитудой a приближается к атому «нуль» (или «рассеивателю») слева, а «рассеянная» или «отраженная» волна с амплитудой b бежит обратно, т. е. налево. Не теряя общности, можно положить амплитуду a падающей волны равной единице. Тогда ампли­туда b будет, вообще говоря, комплексным числом.

То же самое можно сказать и о решениях а n при 1 . Коэф­фициенты могут стать иными, так что следовало бы писать

Здесь g амплитуда волны бегущей направо а d амплитуда волны приходящей - фото 43

Здесь g — амплитуда волны, бегущей направо, а d — амплитуда волны, приходящей справа. Мы хотим рассмотреть такой физический случай, когда вначале волна бежит только слева, и за рассеивателем (или атомом загрязнения) имеется только «прошедшая» волна. Будем поэтому искать решение, в котором d=0. Стало быть, мы попытаемся удовлетворить всем уравне­ниям для а n , кроме средней тройки в (11.28), с помощью сле­дующих пробных решений:

Положение о котором идет речь иллюстрируется фиг 116 Фиг 116 Волны - фото 44

Положение, о котором идет речь, иллюстрируется фиг. 11.6.

Фиг 116 Волны в одномерной решетке а одним примесным атомом в n 0 - фото 45

Фиг. 11.6. Волны в одномерной решетке а одним «примесным» атомом в n= 0.

Используя формулы (11.32) для а -1и а +1, можно из сред­ней тройки уравнений (11.28) найти а 0и два коэффициента b и g. Таким образом, мы найдем полное решение. Надо решить три уравнения (полагая x n =nb) :

Вспомните что 1130 выражает E через k Подставьте это значение Е в - фото 46

Вспомните, что (11.30) выражает E через k . Подставьте это значение Е в уравнения и учтите, что

тогда из первого уравнения получится a 01b 1134 а из третьего a 0g - фото 47

тогда из первого уравнения получится

a 0=1+b, (11.34)

а из третьего

a 0=g, (11.35)

что согласуется друг с другом только тогда, когда

g=1+b. (11.36)

Это уравнение сообщает нам, что прошедшая волна (g) — это просто исходная падающая волна (1) плюс добавочная волна (b), равная отраженной. Это не всегда так, но при рассеянии на одном только атоме оказывается, что это так. Если бы у вас была целая группа атомов примеси, то величина, добавляемая к волне, бегущей вперед, не обязательно вышла бы такой же, как у отраженной волны.

Амплитуду b отраженной волны мы можем получить из среднего из уравнений (11.33); окажется, что

Мы получили полное решение для решетки с одним необычным атомом Вас могло - фото 48

Мы получили полное решение для решетки с одним необычным

атомом.

Вас могло удивить, отчего это проходящая волна оказа­лась «выше», чем падавшая, если судить по уравнению (11.34). Но вспомните, что b и g числа комплексные и что число частиц в волне (или, лучше сказать, вероятность обнаружить частицу) пропорционально квадрату модуля амплитуды. В дей­ствительности «сохранение числа электронов» будет выполнено лишь при условии

|b| 2+|g| 2=1. (11.38)

Попробуйте показать, что в нашем решении так оно и есть.

§ 7. Захват нерегулярностями решетки

Бывает и другой интересный случай. Он может возникнуть, когда F число отрицательное. Если энергия электрона в атоме примеси (при n= 0) ниже, чем где-либо в другом месте, то электрон может оказаться захваченным этим атомом. Иначе говоря, если Е 0+ F ниже самого низа полосы (меньше, чем Е 0 - 2 А), тогда электрон может оказаться «пойманным» в со­стояние с Е<���Е 0 - 2 А. Из всего того, что мы делали до сих пор, такое решение не могло получиться. Но это решение можно получить, если в пробном решении (11.15) разрешить k прини­мать мнимые значения. Положим k = ix. Для n <0 и для n >0 у нас опять будут разные решения. Для n >0 допустимое решение могло бы иметь вид

В экспоненте мы выбрали плюс иначе амплитуда при больших отрицательных n стала - фото 49

В экспоненте мы выбрали плюс; иначе амплитуда при больших отрицательных n стала бы бесконечно большой. Точно так же допустимое решение для n >0 имело бы вид

Если подставить эти пробные решения в 1128 то они удовлетворят всем - фото 50

Если подставить эти пробные решения в (11.28), то они удов­летворят всем уравнениям, кроме средней тройки, при условии, что

А раз сумма этих двух экспонент всегда больше 2 то эта энергия оказывается за - фото 51

А раз сумма этих двух экспонент всегда больше 2, то эта энергия оказывается за пределами (ниже) обычной полосы. Это-то мы и искали. Оставшейся тройке уравнений (11.28) удастся удовлетворить, если взять с = с' и если к выбрать так, чтобы

Сопоставив это уравнение с 1141 найдем энергию захваченного электрона - фото 52

Сопоставив это уравнение с (11.41), найдем энергию захвачен­ного электрона

Захваченный электрон обладает однойединственной энергией а не целой полосой - фото 53

Захваченный электрон обладает одной-единственной энергией (а не целой полосой); она расположена несколько ниже полосы проводимости.

Заметьте, что амплитуды (11.39) и (11.40) не утверждают, что пойманный электрон сидит прямо в атоме примеси. Вероят­ность обнаружить его у одного из соседних атомов дается квад­ратом этих амплитуд. Изменение ее показано столбиками на фиг. 11.7 (при каком-то наборе параметров).

Фиг 117 Относительные вероятности обнаружить захваченный электрон в атомных - фото 54

Фиг. 11.7. Относительные вероятности обнаружить захваченный электрон в атом­ных узлах поблизости от примесного ато­ма — ловушки.

С наибольшей вероятностью электрон можно встретить близ атома примеси. Для соседних атомов вероятность спадает экспоненциально по мере удаления от атома примеси. Это новый пример «проникно­вения через барьер». С точки зрения классической физики элек­трону не хватило бы энергии, чтобы удалиться от энергетиче­ской «дырки» близ центра захвата. Но квантовомеханически он может куда-то недалеко просочиться.

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




9. Квантовая механика II отзывы


Отзывы читателей о книге 9. Квантовая механика II, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Большинство книг на сайте опубликовано легально на правах партнёрской программы ЛитРес. Если Ваша книга была опубликована с нарушениями авторских прав, пожалуйста, направьте Вашу жалобу на PGEgaHJlZj0ibWFpbHRvOmFidXNlQGxpYmtpbmcucnUiIHJlbD0ibm9mb2xsb3ciPmFidXNlQGxpYmtpbmcucnU8L2E+ или заполните форму обратной связи.
img img img img img