Ричард Фейнман - 9. Квантовая механика II
- Название:9. Квантовая механика II
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 9. Квантовая механика II краткое содержание
9. Квантовая механика II - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Кривые нужны просто для того, чтобы было видно, как все меняется.) Вы видите, что оба значения k во всех х n дают одинаковые амплитуды.
Вывод из всего этого состоит в том, что все возможные решения нашей задачи получатся, если взять k только из некоторой ограниченной области. Мы выберем область от -p /b до +p/ b (она показана на фиг. 11.3). В этой области энергия стационарных состояний с ростом абсолютной величины k возрастает.
Еще одно побочное замечание о том, с чем было бы забавно повозиться. Представьте, что электрон может не только перепрыгивать к ближайшим соседям с амплитудой iA/h, но имеет еще возможность одним махом перепрыгивать и к следующим за ними соседям с некоторой другой амплитудой iB/h. Вы опять обнаружите, что решение можно искать в форме а п = e ikx , этот тип решений является универсальным. Вы также увидите, что стационарные состояния с волновым числом k имеют энергию E 0-2 A cos kb- 2 B cos2 kb. Это означает, что форма кривой Е как функции k не универсальна, а зависит от тех частных допущений, при которых решается задача. Это не обязательно косинусоида, и она даже не обязательно симметрична относительно горизонтальной оси. Но зато всегда верно, что кривая вне интервала (-p/ b , p/ b ) повторяется, так что заботиться о других значениях k не нужно.
Посмотрим еще внимательнее на то, что происходит при малых k, когда вариации амплитуд между одним х n и соседним очень маленькие. Будем отсчитывать энергию от такого уровня, чтобы было Е 0 = 2 А; тогда минимум кривой фиг. 11.3 придется на нуль энергии. Для достаточно малых k можно написать
и энергия (11.13) превратится в
Получается, что энергия состояния пропорциональна квадрату волнового числа, описывающего пространственные вариации
амплитуд С n .
§ 3. Состояния, зависящие от времени
В этом параграфе мы хотим подробнее обсудить поведение состояний в одномерной решетке. Если для электрона амплитуда того, что он окажется в х n , равна С n , то вероятность найти его там будет | С n | 2. Для стационарных состояний, описанных уравнением (11.12), эта вероятность при всех х n одна и та же и со временем не меняется. Как же отобразить такое положение вещей, которое грубо можно было бы описать, сказав, что электрон определенной энергии сосредоточен в определенной области, так что более вероятно найти его в каком-то одном месте, чем в другом? Этого можно добиться суперпозицией нескольких решений, похожих на (11.12), но со слегка различными значениями k и, следовательно, с различными энергиями. Тогда, по крайней мере при t =0, амплитуда С n вследствие интерференции различных слагаемых будет зависеть от местоположения, в точности так же, как получаются биения, когда имеется смесь волн разной длины [см. гл. 48 (вып. 4)]. Значит, можно составить такой «волновой пакет», что в нем будет преобладать волновое число k 0, но будут присутствовать и другие волновые числа, близкие к k 0 .
В нашей суперпозиции стационарных состояний амплитуды с разными k будут представлять состояния со слегка различными энергиями и, стало быть, со слегка различными частотами; интерференционная картина суммарного С n поэтому тоже будет меняться во времени, возникнет картина «биений». Как мы видели в гл. 48 (вып. 4), пики биений [места, где |С(x n )| 2 наибольшие] с течением времени начнут двигаться по х; скорость их движения мы назвали «групповой». Мы нашли, что эта групповая скорость связана с зависимостью k от частоты формулой
все это в равной мере относится и к нашему случаю. Состояние электрона, имеющее вид «скопления», т. е. состояние, для которого С n меняется в пространстве так, как у волнового пакета на фиг. 11.5, будет двигаться вдоль нашего одномерного «кристалла» с быстротой v, рапной dw/dk, где w= E/h .
Фиг. 11.5. Вещественная часть С(х n ) как функция х для суперпозиции нескольких состояний с близкими энергиями.
Подставляя (11.16) вместо Е, получаем
Иными словами, электроны движутся по кристаллу с быстротой, пропорциональной самому характерному k. Тогда, согласно (11.16), энергия такого электрона пропорциональна квадрату его скорости, он ведет себя подобно классической частице. Пока мы рассматриваем все в столь крупном масштабе, что никаких тонкостей строения разглядеть не можем, наша квантовомеханическая картина приводит к тем же результатам, что и классическая физика.
В самом деле, если из (11.18) найти k и подставить его в (11.16), то получится
где m эфф— постоянная. Избыточная «энергия движения» электрона в пакете зависит от скорости в точности так же, как и у классической частицы. Постоянная m эфф , именуемая «эффективной массой», дается выражением
Заметьте еще, что можно написать
Если мы решим назвать m эфф v «импульсом», то этот импульс будет связан с волновым числом k так же, как и у свободной частицы.
Не забывайте, что m эфф ничего общего не имеет с реальной массой электрона. Она может быть совсем другой, хотя следует сказать, что в реальных кристаллах часто случается, что ее порядок величины оказывается примерно таким же (в 2 или, скажем, в 20 раз больше, чем масса электрона в пустом пространстве).
Мы только что с вами раскрыли поразительную тайну — как это электрон в кристалле (например, пущенный в германий добавочный электрон) может пронестись через весь кристалл, может лететь по нему совершенно свободно, даже если ему приходится сталкиваться со всеми атомами. Это получается оттого, что его амплитуды, перетекая с одного атома на другой, прокладывают ему путь через кристалл. Вот отчего твердое тело может проводить электричество.
Читать дальшеИнтервал:
Закладка: