Ричард Фейнман - 8a. Квантовая механика I
- Название:8a. Квантовая механика I
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 8a. Квантовая механика I краткое содержание
8a. Квантовая механика I - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Это очень важный результат; перед нами общая теория поглощения света любой молекулярной или атомной системой. Хотя мы вначале считали, что состояние | I > обладает более высокой энергией, чем состояние | II >, но никакие наши рассуждения от этого не зависели. Уравнение (7.55) соблюдается и тогда, когда энергия состояния | I > ниже энергии состояния | II >; тогда Р (I®II) представляет собой вероятность перехода с поглощением энергии от падающей электромагнитной волны. Поглощение атомной системой света всегда предполагает, что имеется амплитуда для перехода в колеблющемся электрическом поле между состояниями, отличающимися на энергию E = hw 0. В каждом отдельном случае она рассчитывается так же, как мы это проделали, и дает выражения наподобие (7.55). Поэтому мы подчеркнем следующие свойства этой формулы. Во-первых, вероятность пропорциональна Т. Иными словами, существует неизменная вероятность на единицу времени, что переход произойдет. Во-вторых, эта вероятность пропорциональна интенсивности света, падающего на систему. В-третьих, вероятность перехода пропорциональна m 2, где, как вы помните, m x определяет энергетический сдвиг, вызываемый электрическим полем x. По этой именно причине m x появлялось и в уравнениях (7.38) и (7.39) в качестве коэффициента связи, ответственного за переход между стационарными состояниями | I > и | II >. Иными словами, для рассматривавшихся нами малых x член m x есть так называемое «возмущение» в матричном элементе гамильтониана, связывающем состояния |/> и |//>. В общем случае m x заменилось бы матричным элементом < II | H | I > (см. гл. 3, § 6).
В гл. 42, § 5 (вып. 4) мы говорили о связи между поглощением света, вынужденным испусканием и самопроизвольным испусканием в терминах введенных Эйнштейном коэффициентов А и В. Здесь наконец-то в наших руках появляется квантовомеханическая процедура для подсчета этих коэффициентов. То, что мы обозначили Р ( I ® II ) для нашей аммиачной двухуровневой молекулы, в точности соответствует коэффициенту поглощения B nm в эйнштейновской теории излучения. Из-за сложности молекулы аммиака — слишком трудной для расчета — нам пришлось взять матричный элемент < II|H | I > в виде m x и говорить, что m извлекается из опыта. Для более простых атомных систем величину m mn , отвечающую к произвольному переходу, можно подсчитать, исходя из определения
где Н mn — это матричный элемент гамильтониана, учитывающего влияние слабого электрического поля. Величина m mn , вычисленная таким способом, называется электрическим дипольным матричным элементом, Квантовомеханическая теория поглощения и испускания света сводится тем самым к расчету этих матричных элементов для тех или иных атомных систем.
Итак, изучение простых систем с двумя состояниями (двухуровневых) привело нас к пониманию общей проблемы поглощения и испускания света.
* Теперь мы опять будем писать | I> и | II> вместо |y I > и |y II >. Вы должны вспомнить, что настоящие состояния |y I > и |y II > суть энергетические базисные состояния, умноженные на соответствующий экспоненциальный множитель.
* Например, как легко убедиться, одно из допустимых решений имеет вид
* Очень жаль, но нам придется ввести новое обозначение. Раз буквы р и Е заняты у нас импульсом и энергией, то мы поостережемся опять обозначать ими дипольный момент и электрическое поле. Напомним, что в этом параграфе m означает электрический дипольный момент.
* В дальнейшем полезно (и читая, и произнося вслух) отличать арабские 1 и 2 и римские I и II. Мы считаем, что удобно для арабских, цифр резервировать названия «один» и «два», а I и II читать как «первый», «второй».
Глава 8
ДРУГИЕ СИСТЕМЫ С ДВУМЯ состояниями
§ 1. Молекулярный ион водорода
§ 2. Ядерные силы
§ 3. Молекула водорода
§ 4.Молекула бензола
§ 5. Красители
§ 6.Гамильтониан частицы со спином 1/2 в магнитном поле
§ 7.Вращающийся электрон в магнитном поле
§ 1. Молекулярный ион водорода
В предыдущей главе мы обсудили некоторые свойства молекулы аммиака в предположении, что это система о двух состояниях (или двухуровневая система). На самом деле, конечно, это не так — у нее есть множество состояний: вращения, колебания, перемещения и т. д., но в каждом из этих состояний движения следует говорить о паре внутренних состояний из-за того, что атом азота может быть переброшен с одной стороны плоскости трех атомов водорода на другую. Сейчас мы рассмотрим другие примеры систем, которые в том или ином приближении можно будет считать системами с двумя состояниями. Многое здесь будет приближенным, потому что всегда имеется множество других состояний, и в более точном анализе их следовало бы учитывать. Но в каждом из этих примеров мы окажемся в силах очень многое понять, рассуждая только о двух состояниях.
Раз мы будем иметь дело только с двухуровневыми системами, то нужный нам гамильтониан будет выглядеть так же, как и в предыдущей главе. Когда гамильтониан не зависит от времени, то известно, что имеются два стационарных состояния с определенными (и обычно разными) энергиями. В общем случае, однако, мы будем начинать наш анализ с выбора базисных состояний (не обязательно этих стационарных состояний), таких, которые, скажем, имеют другой простой физический смысл. Тогда стационарные состояния системы будут представлены линейной комбинацией этих базисных состояний.
Для удобства подытожим важнейшие уравнения, выведенные в гл. 7, Пусть первоначально в качестве базисных состояний были приняты | 1 > и | 2 > . Тогда любое состояние |y> представляется их линейной комбинацией:
Амплитуды С i (под этим подразумеваются как C 1так и С 2) удовлетворяют двум линейным дифференциальным уравнениям
Читать дальшеИнтервал:
Закладка: