Ричард Фейнман - 8a. Квантовая механика I
- Название:8a. Квантовая механика I
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 8a. Квантовая механика I краткое содержание
8a. Квантовая механика I - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Точно так же легко показать, что
С |0 S > дело обстоит чуть посложнее, потому что
Но каждое из состояний | + - > и | - +> можно выразить через «штрихованные» состояния и подставить в сумму:
Умножая сумму (10.50) и (10.51) на 1/Ц2, получаем
Отсюда следует
Теперь у нас есть все необходимые амплитуды. Коэффициенты в (10.48), (10.49) и (10.52) —это матричные элементы
< jТ | iS > . Сведем их в одну матрицу:
Мы выразили преобразование спина 1 через амплитуды а, b, с и d преобразования спина 1/ 2.
Если, например, система Т повернута по отношению к S на угол а вокруг оси у (см. фиг. 3.6, стр. 64), то амплитуды в табл. 10.4—это просто матричные элементы R y (a) в табл. 4.2:
Подставив их в (10.53), получим формулы (3.38), которые приведены на стр. 80 без доказательства.
Но что же случилось с состоянием | IV )?! Это система со спином нуль; значит, у нее есть только одно состояние — оно во всех системах координат одно и то же. Можно проверить, что все так и выходит, если взять разность (10.50) и (10.51); получим
Но (ad-bc) — это определитель матрицы для спина 1/ 2, он просто равен единице. Получается
| IV '>=| IV > при любой относительной ориентации двух систем координат.
* Тем, кто перескочил через гл. 4, придется пропустить и этот параграф.
* Вспомните, что классически U= -m·B, так что энергия наименьшая, когда момент направлен по полю. Для положительно заряженных частиц магнитный момент параллелен спину, для отрицательных — наоборот. Значит, в (10.27) m р — число положительное, а (m е — отрицательное.
*Crampton, Kleppner, Ramsey, Physical Review Letters, 11, 338 (1963).
*В действительности состоянием является
но, как обычно, мы отождествим состояния с постоянными векторами, которые при t=0 совпадают с настоящими векторами.
* Этот оператор сейчас называют оператор обмена спинами.
* Для этих операторов, правда, оказывается, что от их порядка ничего не зависит.
Интервал:
Закладка: