Ричард Фейнман - 8a. Квантовая механика I

Тут можно читать онлайн Ричард Фейнман - 8a. Квантовая механика I - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    8a. Квантовая механика I
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.9/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 8a. Квантовая механика I краткое содержание

8a. Квантовая механика I - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

8a. Квантовая механика I - читать онлайн бесплатно полную версию (весь текст целиком)

8a. Квантовая механика I - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Смотрите, как удобно! Оператор Н', действуя на каждое состояние, дает просто число, умноженное на это же состоя­ние. В матрице < i|H'|j > есть поэтому только диагональные элементы, и можно просто добавить коэффициенты из (10.28) к соответствующим диагональным членам в (10.13), так что гамильтоновы уравнения (10.14) обращаются в

Форма уравнений не изменилась изменились только коэффициенты И пока В не - фото 373

Форма уравнений не изменилась, изменились только коэф­фициенты. И пока В не меняется со временем, можно все делать так же, как и раньше.

Подставляя

8a Квантовая механика I - изображение 374 , мы получаем

К счастью первое и четвертое уравнения попрежнему не зависят от остальных - фото 375

К счастью, первое и четвертое уравнения по-прежнему не зависят от остальных, так что снова пойдет в ход та же техника. Одно решение — это состояние | I >, для которого

или Другое решение Для остальных двух уравнений потребуется - фото 376

или

Другое решение Для остальных двух уравнений потребуется больше работы - фото 377

Другое решение

Для остальных двух уравнений потребуется больше работы потому что коэффициенты - фото 378

Для остальных двух уравнений потребуется больше работы, потому что коэффициенты при а 2и a 3уже не равны друг другу. Но зато они очень похожи на ту пару уравнений, которую мы писали для молекулы аммиака. Оглядываясь на уравнения (7.20) и (7.21), можно провести следующую аналогию (помните, что тамошние индексы 1 и 2 соответствуют здесь индексам 2 и 3):

Раньше энергии давались формулой 725 которая имела вид Подставляя - фото 379

Раньше энергии давались формулой (7.25), которая имела вид

Подставляя сюда 1033 получаем для энергии В гл 7 мы привыкли - фото 380

Подставляя сюда (10.33), получаем для энергии

В гл 7 мы привыкли называть эти энергии Е I и Е II теперь мы их обозначим Е - фото 381

В гл. 7 мы привыкли называть эти энергии Е I и Е II , теперь мы их обозначим Е III и E IV :

Итак мы нашли энергии четырех стационарных состояний атома водорода в - фото 382

Итак, мы нашли энергии четырех стационарных состояний атома водорода в постоянном магнитном поле. Проверим наши выкладки, для чего устремим В к нулю и посмотрим, полу­чатся ли те же энергии, что и в предыдущем параграфе. Вы ви­дите, что вес в порядке. При В= 0энергии Е I , Е II и Е III обра­щаются в + А, a E IV в - ЗА. Даже наша нумерация состоя­ний согласуется с прежней. Но когда мы включим магнитное поле, то каждая энергия начнет меняться по-своему. Посмотрим, как это происходит.

Во-первых, напомним, что у электрона m еотрицательно и почти в 1000 раз больше m р, которое положительно. Значит, и m e+m pи m e-m pоба отрицательны и почти равны друг другу. Обозначим их -m и -m':

И m и m положительны и по величине почти совпадают с m е которое примерно - фото 383

(И m и m' положительны и по величине почти совпадают с m е, которое примерно равно одному магнетону Бора.) Наша четверка энергий тогда обратится в

Энергия Е I вначале равна А и линейно растет с ростом В со скоростью m Энергия - фото 384

Энергия Е I вначале равна А и линейно растет с ростом В со скоростью m. Энергия Е II тоже вначале равна A , но с ростом В линейно убывает, наклон ее кривой равен -m . Изменение этих уровней с В показано на фиг. 10.3. На рисунке показаны также графики энергий Е III и E IV . Их зависимость от В иная. При малых В они зависят от В квадратично; вначале наклон их равен нулю, а затем они начинают искривляться и при боль­ших В приближаются к прямым с наклоном ±m', близким к наклону e i и Е II

Сдвиг уровней энергии атома, вызываемый действием маг­нитного поля, называется эффектом Зеемана. Мы говорим, что кривые на фиг. 10.3 показывают зеемановское расщепление основ­ного состояния водорода.

Фиг 103 Уровни энергии основного состояния водорода в магнитном поле В - фото 385

Фиг. 10.3. Уровни энергии основного состояния

водорода в магнитном поле В .

Кривые E III и Е IV приближаются к пунктирным прямым

А±m'В.

Когда магнитного поля нет, то просто получается одна спектральная линия от сверхтонкой структуры водорода. Переходы между состоянием | IV > и любым из осталь­ных трех происходят с поглощением или испусканием фотона, частота которого равна 1420 Мгц :1 /h, умноженной на разность энергий 44. Но когда атом находится в магнитном поле В, то линий получается гораздо больше. Могут происходить переходы между любыми двумя из четырех состояний. Значит, если мы имеем атомы во всех четырех состояниях, то энергия может поглощаться (или излучаться) в любом из шести переходов, показанных на фиг. 10.4 вертикальными стрелками.

Фиг 104 Переходы между уровнями энергии основного состояния водорода в - фото 386

Фиг. 10.4. Переходы между уровнями энергии основного состояния водорода в некотором маг­нитном поле В.

Многие из этих переходов можно наблюдать с помощью техники молеку­лярных пучков Раби, которую мы описывали в гл. 35, § 3 (вып.7).

Что же является причиной переходов? Они возникают, если наряду с сильным постоянным полем B приложить малое возмущающее магнитное поле, которое меняется во времени. То же самое мы наблюдали и при действии переменного электрического поля на молекулу аммиака. Только здесь виновник переходов — это магнитное поле, действующее на магнитные моменты. Но теоретические выкладки те же самые, что и в случае аммиака. Проще всего они получаются, если взять возмущающее магнит­ное поле, вращающееся в плоскости ху, хотя то же будет от любого осциллирующего горизонтального поля. Если вы вста­вите это возмущающее поле в качестве добавочного члена в га­мильтониан, то получите решения, в которых амплитуды ме­няются во времени, как это было и с молекулой аммиака. Зна­чит, вы сможете легко и аккуратно рассчитать вероятность перехода из одного состояния в другое. И обнаружите, что все это согласуется с опытом.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




8a. Квантовая механика I отзывы


Отзывы читателей о книге 8a. Квантовая механика I, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x