Ричард Фейнман - 8a. Квантовая механика I

Тут можно читать онлайн Ричард Фейнман - 8a. Квантовая механика I - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    8a. Квантовая механика I
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.9/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 8a. Квантовая механика I краткое содержание

8a. Квантовая механика I - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

8a. Квантовая механика I - читать онлайн бесплатно полную версию (весь текст целиком)

8a. Квантовая механика I - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Состояние 2. У электрона спин смотрит вверх, а у протона— вниз.

Состояние 3. У электрона спин смотрит вниз, а у протона —

вверх.

Состояние 4. И у электрона, и у протона спины смотрят

вниз.

Для краткой записи этих четырех состояний введем следую­щие обозначения:

Состояние 1: |+ +>; у электрона спин вверх, у протона спин вверх.

Состояние 2: | + ->; у электрона спин вверх,

у протона спин вниз.

Состояние 3: | - + >; у электрона спин вниз, у протона спин вверх.

Состояние 4: | - - >; у электрона спин вниз, у протона спин вниз . (10.1)

Помните, что первый знак плюс или минус относится к элек­трону, второй — к протону. Чтобы эти обозначения были у вас под рукой, они сведены на фиг. 10.1.

Фиг 101 Совокупность базисных состояний для основного состояния атома - фото 335

Фиг. 10.1. Совокупность базисных состояний

для основного состояния атома водорода.

Эти состояния мы обозначаем | + +>, | + ->> |- +>.

Временами будет удобнее обозначать эти состояния |1>, |2>, |3> и |4>.

Вы можете сказать: «Но частицы взаимодействуют, и, может быть, эти состояния вовсе не являются правильными базисными состояниями. Получается, будто вы рассматриваете обе частицы независимо». Да, действительно! Взаимодействие ставит перед нами вопрос: каков гамильтониан системы? Но вопрос о том, как описать систему, не касается взаимодействия. Что бы мы ни выбрали в качестве базиса, это никак не связано с тем, что слу­чится после. Может оказаться, что атом не способен оставаться в одном из этих базисных состояний, даже если с него все и на­чалось. Но это другой вопрос. Это вопрос о том, как со временем меняются амплитуды в выбранном (фиксированном) базисе. Вы­бирая базисные состояния, мы просто выбираем «единичные векторы» для нашего описания.

Раз уже мы коснулись этого, бросим взгляд на общую проб­лему отыскания совокупности базисных состояний, когда имеет­ся не одна частица, а больше. Вы знаете базисные состояния для одной частицы. Электрон, например, полностью описывается в реальной жизни (не в наших упрощенных случаях, а в реаль­ной жизни) заданием амплитуд пребывания в одном из следующих состояний:

| Электрон спином вверх с импульсом р>или

| Электрон спином вниз с импульсом р>.

В действительности существуют две бесконечные совокупности состояний, по одному на каждое значение р. Значит, сказать, что электронное состояние |y> описано полностью, можно лишь тогда, когда вы знаете все амплитуды

где и представляют компоненты момента количества движения вдоль какойто - фото 336

где + и - представляют компоненты момента количества движения вдоль ка­кой-то оси, обычно оси z, a p— вектор импульса. Стало быть, для каждого мыс­лимого импульса должны быть две ампли­туды (дважды бесконечная совокупность базисных состояний). Вот и все, что нужно для описания отдельной частицы.

Таким же образом могут быть написаны базисные состояния, когда частиц не одна, а больше. Например, если надо было бы рассмотреть электрон и протон в более сложном, чем у нас, слу­чае, то базисные состояния могли бы быть следующими: Электрон с импульсом p 1 движется спином вверх, а протон с импульсом р 2 движется спином вниз. И так далее для других спиновых комбинаций. Если частиц больше двух, идея остается та же. Так что вы видите, что распи­сать возможные базисные состояния на самом деле очень легко. Вопрос только в том, каков гамильтониан.

Нам для изучения основного состояния водорода нет нужды применять полные совокупности базисных состояний для раз­личных импульсов. Мы оговариваем и фиксируем определенные импульсные состояния протона и электрона, когда произносим слова «основное состояние». Детали конфигурации — амплиту­ды для всех импульсных базисных состояний — можно рассчи­тать, но это уже другая задача. А мы сейчас касаемся только влияния спина, так что ограничимся только четырьмя базис­ными состояниями (10.1). Очередной вопрос таков: каков га­мильтониан для этой совокупности состояний?

§ 2. Гамильтониан основного состояния водорода

Через минуту вы это узнаете. Но прежде хочу вам напомнить одну вещь: всякое состояние всегда можно представить в виде линейной комбинации базисных состояний. Для любого состоя­ния |y|> можно написать

Напомним что полные скобки это просто комплексные числа так что их можно - фото 337

Напомним, что полные скобки — это просто комплексные числа, так что их можно обозначить обычным образом через С i , где i =l, 2, 3 или 4, и записать (10.2) в виде

Задание четверки амплитуд С i полностью описывает спиновое состояние y Если - фото 338

Задание четверки амплитуд С i полностью описывает спиновое состояние |y>. Если эта четверка меняется во времени (как это и будет на самом деле), то скорость изменения во времени дается оператором Н^. Задача в том, чтобы найти этот оператор H^ .

Не существует общего правила, как писать гамильтониан атомной системы, и отыскание правильной формулы требует большего искусства, чем отыскание системы базисных состоя­ний. Мы вам смогли дать общее правило, как записывать систему базисных состояний для любой задачи, в которой есть протон и электрон, но описать общий гамильтониан такой комбинации на этом уровне слишком трудно. Вместо этого мы подведем вас к гамильтониану некоторыми эвристическими рассуждениями, и вам придется признать его .правильным, потому что резуль­таты будут согласовываться с экспериментальными наблюде­ниями.

Вспомните, что в предыдущей главе мы смогли описать га­мильтониан отдельной частицы со спином 1/ 2, применив сигма-матрицы или в точности эквивалентные им сигма-операторы. Свойства операторов сведены в табл. 10.1. Эти операторы, являю­щиеся просто удобным, кратким способом запоминания матрич­ных элементов типа <+|s z|+> были полезны для описания поведения отдельной частицы со спином 1/ 2. Возникает вопрос, можно ли отыскать аналогичное средство для описания системы с двумя спинами. Да, и очень просто. Вот смотрите. Мы изобре­тем вещь, которую назовем «электрон-сигма» и которую будем представлять векторным оператором s eс тремя компонентами s e x, s e yи s e z. Дальше условимся, что когда одна из них действует

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




8a. Квантовая механика I отзывы


Отзывы читателей о книге 8a. Квантовая механика I, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x