Ричард Фейнман - 8a. Квантовая механика I
- Название:8a. Квантовая механика I
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 8a. Квантовая механика I краткое содержание
8a. Квантовая механика I - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Анализ, который мы только что привели,— характерный пример того, как сегодня используется квантовая механика, чтобы разгадать странные частицы. Во всех сложных теориях, о которых вы, быть может, слышали, нет ничего сверх этого элементарного фокуса, использующего принципы суперпозиции и другие принципы квантовой механики того же уровня. Некоторые утверждают, что у них есть теории, с помощью которых можно подсчитать b и a или по крайней мере a при данном b. Но эти теории совершенно бесполезны. Например, теория, предсказывающая значение а при данном b, говорит, что a должно быть бесконечным. Система уравнений, из которой они исходят, включает два p-мезона и затем возвращается от двух p-мезонов обратно к K 0-мезону и т. д. Если все выкладки проделать, то действительно возникает пара уравнений, похожих на те, что у нас получались, но, поскольку у двух p-мезонов имеется бесконечно много состояний, зависящих от их импульсов, интегрирование по всем возможностям приводит к a, равному бесконечности. А природное a не бесконечно. Значит, динамические теории неверны. На самом деле чрезвычайно поразительно, что единственные явления, которые могут быть в мире странных частиц предсказаны, вытекают из принципов квантовой механики на том уровне, на котором вы их сейчас изучаете.
§ 6. Обобщение на системы с N состояниями
Мы покончили с системами с двумя состояниями, рассказав все, что хотелось. В дальнейших главах мы перейдем к изучению систем с большим числом состояний. Расширение на системы с N состояниями идей, разработанных для двух состояний, проходит довольно просто. Это делается примерно так.
Если система обладает N различными состояниями, то всякое состояние |y( t )>можно представить как линейную комбинацию произвольной совокупности базисных состояний | t > , где i =l, 2, 3, . . ., N:
Коэффициенты C i ( t ) — это амплитуды < i |y( t )>. Поведение амплитуд С i во времени направляется уравнениями
где энергетическая матрица H ij описывает физику задачи. С виду она такая же, как и для двух состояний. Но только теперь и i, и j должны пробегать по всем N базисным состояниям, и энергетическая матрица H ij (или, если вам больше нравится, гамильтониан) — это теперь матрица NXN, состоящая из N 2чисел. Как и прежде, H ij =H ji (до тех пор, пока частицы сохраняются) и диагональные элементы H ii суть вещественные числа.
Мы нашли общее решение для всех С в системе с двумя состояниями, когда энергетическая матрица постоянна (не зависит от t). Точно так же нетрудно решить и уравнение (9.58) для системы с N состояниями, когда Н не зависит от времени. Опять мы начинаем с того, что ищем возможное решение, в котором у всех амплитуд зависимость от времени одинакова. Мы пробуем
Если все эти C i подставить в (9.58), то производные dC i ( t ) /dt превращаются просто в (- i/h)EC i . Сокращая повсюду на общую экспоненту, получаем
Эта система N линейных алгебраических уравнений для N неизвестных a 1 а 2, . . ., а n ;решение у нее бывает только тогда, когда вам сильно повезет, когда определитель из коэффициентов при всех а равен нулю. Но не нужно чересчур умничать: можете просто начать их решать любым способом, и вы сразу увидите, что решить их удается лишь при некоторых значениях E . (Вспомните, что единственная величина, которая в этих уравнениях подлежит подгонке, это Е.)
Если, впрочем, вы хотите, чтобы все было по форме, перепишите (9.60) так:
Затем примените правило (если оно вам знакомо), что эти уравнения будут иметь решения лишь для тех значений Е, для которых
Каждый член в детерминанте — это просто H ij и только из диагональных отнято Е. Иначе говоря, (9.62) означает просто
Это, конечно, всего-навсего особый способ записывать алгебраические уравнения для Е, складывая вереницы членов, перемножаемых в определенном порядке. Эти произведения дадут все степени Е вплоть до E N .
Значит, у нас есть многочлен N- йстепени, который равняется нулю. У него, вообще говоря, есть N корней. (Нужно помнить, однако, что некоторые из них могут быть кратными корнями; это значит, что два или более корней могут быть равны друг другу.) Обозначим эти N корней так:
(пусть nобозначает n-е порядковое числительное, так что nпринимает значения I , II , . . ., N). Некоторые из этих энергий могут быть между собой равны, скажем Е II =Е III , но мы решили все же обозначать их разными именами.
Уравнения (9.60) или (9.61) имеют по одному решению для каждого значения Е [из (9.64)]. Если вы подставите любое из Е, скажем E n , в (9.60) и найдете все а i , то получится ряд чисел а i , относящихся к энергии E n . Этот ряд мы обозначим а i ( n).
Если подставить эти а i ( n) в (9.59), то получатся амплитуды С i ( n) того, что состояния с определенной энергией находятся в базисном состоянии | i >. Пусть | n> обозначает вектор состояния для состояния с определенной энергией при t= 0 . Тогда можно написать
где
Интервал:
Закладка: