Ричард Фейнман - 8. Квантовая механика I

Тут можно читать онлайн Ричард Фейнман - 8. Квантовая механика I - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    8. Квантовая механика I
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.2/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 8. Квантовая механика I краткое содержание

8. Квантовая механика I - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

8. Квантовая механика I - читать онлайн бесплатно полную версию (весь текст целиком)

8. Квантовая механика I - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Раз базисные векторы е i перпендикулярны друг другу, то существует соотношение

Это соответствует соотношению 325 между базисными состояниями i - фото 306

Это соответствует соотношению (3.25) между базисными со­стояниями i

Теперь вы понимаете почему говорят что базисные состояния i все - фото 307

Теперь вы понимаете, почему говорят, что базисные состоя­ния i все «ортогональны друг другу».

Между (6.1) и скалярным произведением есть одно мини­мальное различие. У нас

а в векторной алгебре АВ ВА В квантовой механике с ее комплексными - фото 308

а в векторной алгебре

А·В = В·А.

В квантовой механике с ее комплексными числами мы обязаны выдерживать порядок множителей, а в скалярном произве­дении порядок неважен.

Теперь рассмотрим такое векторное уравнение:

оно немножко необычно но тем не менее верно И означает оно то же самое что и - фото 309

оно немножко необычно, но тем не менее верно. И означает оно то же самое, что и

Заметьте однако что в 66 входит величина отличная от скалярного - фото 310

Заметьте, однако, что в (6.6) входит величина, отличная от скалярного произведения. Скалярное произведение — это про­сто число, а (6.6) — векторное уравнение. Одним из великих приемов векторного анализа было абстрагировать от уравне­ний идею самого вектора. Равным образом можно попытаться абстрагировать от уравнения (6.1) то, что в квантовой механике является аналогом «вектора». И это действительно можно сделать. Уберем

Скобку представляют себе состоящей из двух половинок Вторую половинку j - фото 311

Скобку представляют себе состоящей из двух полови­нок. Вторую половинку |j> называют кет, а первую брэ (поставленные рядом они образуют брэ-кетєbгаcket, скоб-каєскобка — обозначение, предложенное Дираком); полусимволы также называют векторами состоя­ний. Это не числа отнюдь, а нам вообще-то нужно, чтобы результаты наших расчетов выражались числами; стало быть, такие «незаконченные» величины представляют собой проме­жуточные шаги в расчетах.

До сих пор мы все свои результаты выражали с помощью чисел. Как же мы умудрялись избегать векторов? Забавно, что даже в обычной векторной алгебре можно сделать так, чтобы во все уравнения входили только числа. Например, вместо векторного уравнения типа

F = т а всегда можно написать

C·F= (m a).

Получается уравнение, связывающее скалярные произведения и справедливое для любого вектора С. Но если оно верно для любого С, то едва ли имеет смысл вообще писать это С!

Теперь вернемся к (6.1). Это уравнение справедливо при любых c . Значит, для сокращения письма мы должны просто убрать c и написать вместо (6.1) уравнение (6.8). Это уравне­ние снабдит нас той же самой информацией, лишь бы мы пони­мали, что его всегда надлежит «завершить», «умножив слева на...», т. е. просто дописав некоторое

Может быть, вы в уравнении (6.8) уже нацелились и на j? Раз (6.8) справедливо при любом j, зачем же нам его держать? И действительно, Дирак предлагает абстрагироваться и от j, так что остается только

Вот он каков великий закон квантовой механики Этот закон утверждает что - фото 312

Вот он каков — великий закон квантовой механики! Этот закон утверждает, что если вы вставите любые два состояния c и j с обеих сторон, слева и справа, то опять вернетесь к (6.1). Уравнение (6.9) вообще-то не очень полезно, но зато является неплохим напоминанием о том, что уравнение выполняется для любых двух состояний.

§ 2. Разложение векторов состояний

Посмотрим на уравнение (6.8) еще раз; его можно рассмат­ривать следующим образом. Любой вектор состояния |j> может быть представлен в виде линейной комбинации совокуп­ности базисных «векторов» с подходящими коэффициентами, или, если угодно, в виде суперпозиции «единичных векторов» в подходящих пропорциях. Чтобы подчеркнуть, что коэффи­циенты < i |j> — это просто обычные (комплексные) числа, на­пишем

< i |j>= С i . Тогда (6.8) совпадает с

Такое же уравнение можно написать и для всякого другого вектора состояния - фото 313

Такое же уравнение можно написать и для всякого другого вектора состояния, скажем для |c>, но, конечно, с другими коэффициентами, скажем с D i . Тогда будем иметь

где D i это просто амплитуды i c Представим что мы начали бы с того - фото 314

где D i это просто амплитуды < i |c>.

Представим, что мы начали бы с того, что в (6.1) абстра­гировались бы от j. Тогда мы бы имели

Вспоминая что i i c можно записать это в виде А теперь - фото 315

Вспоминая, что i >=< i |c>*, можно записать это в виде

А теперь интересно вот что чтобы обратно получить можно просто перемножить - фото 316

А теперь интересно вот что: чтобы обратно получить , можно просто перемножить (6.13) и (6.10). Только, делая это, надо быть внимательным к индексам суммирования, потому что они в разных уравнениях разные. Перепишем сперва (6.13):

Это ничего не меняет Объединяя с 610 получаем Вспомните однако - фото 317

Это ничего не меняет. Объединяя с (6.10), получаем

Вспомните однако что i d ij так что в сумме останутся только члены с ji - фото 318

Вспомните, однако, что i >=d ij, так что в сумме останутся только члены с j=i. Выйдет

где как вы помните d i i ci а C i Опять мы являемся свидетелями - фото 319

где, как вы помните, d* i =< i |c>*=i >, а C i =. Опять мы являемся свидетелями тесной аналогии со скалярным произведением

8 Квантовая механика I - изображение 320

Единственная разница — что D i нужно комплексно сопрягать. Значит, (6.15) утверждает, что если разложить векторы со­стояний по базисным векторам < i| или | i ), то ампли­туда перехода из j в c дается своего рода скалярным произве­дением (6.15). А это просто (6.1), записанное в других символах. Мы ходим по кругу, привыкая к новым символам.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




8. Квантовая механика I отзывы


Отзывы читателей о книге 8. Квантовая механика I, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x