Ричард Фейнман - 7. Физика сплошных сред
- Название:7. Физика сплошных сред
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 7. Физика сплошных сред краткое содержание
7. Физика сплошных сред - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Посмотрим, что получится, если мы приложим к чему-то «косое» напряжение. Под косым, или скалывающим, напряжением мы подразумеваем такое воздействие, как показано на фиг. 38.4.
Фиг. 38.4. Однородный сдвиг.
В качестве предварительной задачи посмотрим, какова будет деформация кубика под действием сил, показанных на фиг. 38.5.
Фиг. 38.5. Действие сжимающих сил, давящих на вершину и основание, и равных им растягивающих сил с двух сторон.
Снова можно разделить эту задачу на две: вертикальное давление и горизонтальное растяжение. Обозначая через А площадь грани кубика, мы получаем для изменения горизонтальной длины
Изменение же высоты по вертикали равно просто тому же выражению с обратным знаком.
Предположим теперь, что мы имеем тот же самый кубик, и подвергнем его действию сдвиговых сил, показанных на фиг. 38.6, а.
Фиг. 38.6. Две пары сил сдвига (а) создают то же самое напряжение, что и сжимающие = растягивающие силы (б).
Заметим теперь, что все силы должны быть равными, ибо на тело не должен действовать никакой момент сил и оно должно находиться в равновесии. (Подобные силы должны действовать также и в случае, изображенном на фиг. 38.4, поскольку кубик находится в равновесии. Они обеспечиваются тем, что кубик «приклеен» к столу.) При таких условиях говорят, что кубик находится в состоянии чистого сдвига. Но обратите внимание, что если мы разрежем кубик плоскостями под углом 45°, скажем, вдоль диагонали А на фиг. 38.6, а, то полная сила, действующая в этой плоскости, нормальна к ней и равна Ц2G.Площадь, на которой действует эта сила, равна Ц2A;следовательно, напряжение, нормальное к этой плоскости, будет просто G/A. Точно так же если взять плоскость, наклоненную под углом 45° в другую сторону, т. е. по диагонали В, то мы увидим, что на ней действует нормальное сдавливающее напряжение, равное - G/A. Из этого ясно, что напряжение при «чистом сжатии» эквивалентно комбинации растягивающего и сжимающего напряжений, направленных под прямым углом друг к другу и под углом 45° к первоначальным граням кубика. Внутренние напряжения и деформации будут такими же, как и в большом кубике материала под действием сил, показанных на фиг. 38.6, б. Но эту задачу мы уже решили. Изменение длины диагонали задается уравнением (38.10):
(Одна диагональ сокращается, а другая удлиняется.)
Часто деформацию сдвига удобно описывать с помощью угла «искажения» кубика q, показанного на фиг. 38.7.
Фиг. 38.7. Напряжение сдвига q равно 2DD/D.
Из геометрии фигуры вы видите, что горизонтальный сдвиг б верхнего края равен Ц 2DD, так что
Напряжение сдвига g определяется как отношение тангенциальной силы, действующей на грань, к площади грани g=G/A. Воспользовавшись уравнением (38.11), мы из (38.12) получаем
Или, если написать это в форме
Напряжение = ПостояннаяXДеформация
g=mq. (38.13)
Коэффициент пропорциональности m называется модулем сдвига (или иногда коэффициентом жесткости). Вот как он выражается через Y и s:
Кстати, модуль сдвига должен быть положительным, иначе мы бы могли получить энергию от самопроизвольного сдвига кубика. Из уравнения (38.14) очевидно, что постоянная а должна быть больше -1. Теперь мы знаем, что о заключена между -1 и 1/ 2, но на практике, однако, она всегда больше нуля. В качестве последнего примера состояний подобного типа, когда напряженность постоянна по всему материалу, давайте рассмотрим задачу о бруске, который растягивается и в то же время закреплен таким образом, что боковое сокращение невозможно. (Технически немного легче сжимать брусок и сдерживать бока его от «распирания», но в сущности — это та же самая задача.) Что при этом происходит? На брусок должны действовать боковые силы, которые препятствуют изменению его толщины,— силы, которых мы не знаем непосредственно, но которые следует вычислить. Эта задача того же самого сорта, что мы решали, но только с немного другой алгеброй. Представьте себе силы, действующие на все три стороны, как это показано на фиг. 38.8.
Фиг. 38.8. Растяжение без сокращения бокового размера.
Мы вычислим изменение размеров и подберем такие поперечные силы, чтобы ширина и высота оставались постоянными. Следуя обычным рассуждениям, мы получаем для трех напряжений
Но поскольку по условию Dl уи Dl z равны нулю, то уравнения (38.16) и (38.17) дают два соотношения, связывающие F y и F z с F x . Совместно решая их, найдем
а подставляя (38.18) в (38.15), получаем
Это соотношение вы часто можете встретить «перевернутым» и с преобразованным квадратичным полиномом по s, т. е.
Когда вы удерживаете бока, модуль Юнга умножается на некоторую сложную функцию s. Из уравнения (38.19) можно сразу же увидеть, что множитель перед Y всегда больше единицы. Растянуть брусок, когда его бока удерживаются, гораздо труднее. Это означает также, что брусок становятся жестче, когда его боковые стороны закреплены, нежели когда они свободны.
Читать дальшеИнтервал:
Закладка: