Ричард Фейнман - 6. Электродинамика

Тут можно читать онлайн Ричард Фейнман - 6. Электродинамика - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    6. Электродинамика
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.88/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 6. Электродинамика краткое содержание

6. Электродинамика - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

6. Электродинамика - читать онлайн бесплатно полную версию (весь текст целиком)

6. Электродинамика - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Но верно ли это и для механики? Правда ли, что частица не просто «идет верным путем», а пересматривает все другие мыслимые траектории? И что если, ставя преграды на ее пути, мы не дадим ей заглядывать вперед, то мы получим некий ана­лог явления дифракции? Самое чудесное во всем этом — то, что все действительно обстоит так. Именно это утверждают законы квантовой механики. Так что наш принцип наименьшего действия сформулирован не полностью. Он состоит не в том, что частица избирает путь наименьшего действия, а в том, что она «чует» все соседние пути и выбирает тот, вдоль которого действие минимально, и способ этого выбора сходен с тем, ка­ким свет отбирает кратчайшее время. Вы помните, что способ, каким свет отбирает кратчайшее время, таков: если свет пойдет по пути, требующему другого времени, то придет он с другой фазой. А полная амплитуда в некоторой точке есть сумма вкладов амплитуд для всех путей, по которым свет может ее достичь. Все те пути, у которых фазы резко различаются, ничего после сложения не дают. Но если вам удалось найти всю последовательность путей, фазы которых почти одинаковы, то мелкие вклады сложатся, и в точке прибытия полная ампли­туда получит заметное значение. Важнейшим путем становится тот, возле которого имеется множество близких путей, дающих ту же фазу.

В точности то же происходит и в квантовой механике. За­конченная квантовая механика (нерелятивистская и пренебре­гающая спином электрона) работает так: вероятность того, что частица, выйдя из точки 1 в момент t 1 , достигнет точки 2 в момент t 2 , равна квадрату амплитуды вероятности. Полная амплитуда может быть записана в виде суммы амплитуд для всех возможных путей — для любого пути прибытия. Для лю­бого x(t), которое могло бы возникнуть для любой мыслимой воображаемой траектории, нужно подсчитать амплитуду. Затем их все нужно сложить. Что же мы примем за амплитуду ве­роятности некоторого пути? Наш интеграл действия говорит нам, какой обязана быть амплитуда отдельного пути. Ампли­туда пропорциональна e iS / h , где S — действие на этом пути. Это значит, что если мы представим фазу амплитуды в виде комплексного числа, то фазовый угол будет равен S/h,. Действие S имеет размерность энергии на время, и у постоянной Планка размерность такая же. Это постоянная, которая определяет, когда нужна квантовая механика.

И вот как все это срабатывает. Пусть для всех путей дейст­вие S будет весьма большим по сравнению с числом h . Пусть какой-то путь привел к некоторой величине амплитуды. Фаза рядом проложенного пути окажется совершенно другой, потому что при огромном S даже незначительные изменения S резко меняют фазу (ведь h чрезвычайно мало). Значит, рядом лежащие пути при сложении обычно гасят свои вклады. И толь­ко в одной области это не так — в той, где и путь и его сосед— оба в первом приближении обладают одной и той же фазой (или, точнее, почти одним и тем же действием, меняющимся в пределах h ). Только такие пути и принимаются в расчет. А в предельном случае, когда постоянная Планка h стремится к нулю, правильные квантовомеханические законы можно подытожить, сказав: «Забудьте обо всех этих амплитудах ве­роятностей. Частица и впрямь движется по особому пути — именно по тому, по которому S в первом приближении не ме­няется». Такова связь между принципом наименьшего действия и квантовой механикой. То обстоятельство, что таким способом можно сформулировать квантовую механику, было открыто в 1942 г. учеником того же самого учителя, мистера Бадера, о котором я вам рассказывал. [Первоначально квантовая меха­ника была сформулирована при помощи дифференциального уравнения для амплитуды (Шредингер), а также при помощи некоторой матричной математики (Гейзенберг).]

6 Электродинамика - изображение 241

Теперь я хочу потолковать о других принципах минимума в физике. Есть очень много интересных принципов такого рода. Я не буду их все перечислять, а назову еще только один. Позже, когда мы доберемся до одного физического явления, для ко­торого существует превосходный принцип минимума, я рас­скажу вам о нем. А сейчас я хочу показать, что необязательно описывать электростатику при помощи дифференциального уравнения для поля; можно вместо этого потребовать, чтобы некоторый интеграл обладал максимумом или минимумом. Для начала возьмем случай, когда плотность зарядов известна повсюду, а нужно найти потенциал j в любой точке простран­ства. Вы уже знаете, что ответ должен быть такой:

Другой способ утверждать то же самое заключается в следующем надо вычислить - фото 242

Другой способ утверждать то же самое заключается в следую­щем: надо вычислить интеграл U*

это объемный интеграл. Он берется по всему пространству. При правильном распределении потенциала j(x, у, z) это выра­жение достигает минимума.

Мы можем показать, что оба эти утверждения относительно электростатики эквивалентны. Предположим, что мы выбрали произвольную функцию j. Мы хотим показать, что когда в ка­честве j мы возьмем правильное значение потенциала j плюс малое отклонение f, то в первом порядке малости изменение в U* будет равно нулю. Так что мы пишем

6 Электродинамика - изображение 243

здесь j — это то, что мы ищем; но мы проварьируем j, чтобы увидеть, каким он должен быть для того, чтобы вариация U * оказалась первого порядка малости. В первом члене U* нам нужно написать

6 Электродинамика - изображение 244

Единственный член первого порядка, который будет ме­няться, таков:

6 Электродинамика - изображение 245

Во втором члене U * подынтегральное выражение примет вид

6 Электродинамика - изображение 246

изменяющаяся часть здесь равна rf Оставляя только меняющиеся члены получим - фото 247

изменяющаяся часть здесь равна rf. Оставляя только меняю­щиеся члены, получим интеграл

Дальше, руководствуясь нашим старым общим правилом, мы должны очистить интеграл от всех производных по f. По­смотрим, что это за производные. Скалярное произведение равно

Это нужно проинтегрировать по x у и по z И здесь напрашивается тот же - фото 248

Это нужно проинтегрировать по x у и по z И здесь напрашивается тот же - фото 249

Это нужно проинтегрировать по x , у и по z. И здесь напраши­вается тот же фокус: чтобы избавиться от df/dx, мы проинтегри­руем по х по частям. Это приведет к добавочному дифференци­рованию j по х. Это та же основная идея, с помощью которой мы избавились от производных по t. Мы пользуемся равенством

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




6. Электродинамика отзывы


Отзывы читателей о книге 6. Электродинамика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x