Ричард Фейнман - 6. Электродинамика

Тут можно читать онлайн Ричард Фейнман - 6. Электродинамика - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    6. Электродинамика
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.88/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 6. Электродинамика краткое содержание

6. Электродинамика - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

6. Электродинамика - читать онлайн бесплатно полную версию (весь текст целиком)

6. Электродинамика - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если бы вы не знали дифференциального исчисления, вы могли бы проделать такую же вещь для отыскания минимума обычной функции f(x). Вы бы задумались над тем, что случится, если взять f(x) и прибавить к х малую величину h, и доказы­вали бы, что поправка к f(x) в первом порядке по h долж­на в минимуме быть равна нулю. Вы бы подставили x+h вместо х и разложили бы f(x+h) с точностью до первой сте­пени h. . ., словом, повторили бы все то, что мы намерены

Итак идея наша заключается в том что мы подставляем xtxt h t в - фото 223

Итак, идея наша заключается в том, что мы подставляем x(t)=x(t)+- h (t) в формулу для действия

где через V(x) обозначена потенциальная энергия. Производная dx/dt — это, естественно, производная от x (t) плюс производ­ная от h (t), так что для действия я получаю такое выражение:

Теперь это нужно расписать подетальней Для квадратичного слагаемого я получу - фото 224

Теперь это нужно расписать подетальней Для квадратичного слагаемого я получу - фото 225

Теперь это нужно расписать подетальней. Для квадратич­ного слагаемого я получу

Но постойтека Ведь мне не нужно заботиться о порядках выше первого Я могу - фото 226

Но постойте-ка! Ведь мне не нужно заботиться о порядках выше первого. Я могу убрать все слагаемые, в которых есть h 2и высшие степени, и ссыпать их в ящик под названием «второй и высшие порядки». Из этого выражения туда попадет только одна вторая степень, но из чего-то другого могут войти и выс­шие. Итак, часть, связанная с кинетической энергией, такова:

Дальше нам нужен потенциал V в точках xh Я считаю т малой и могу разложить - фото 227

Дальше нам нужен потенциал V в точках x+h. Я считаю т) малой и могу разложить V(x) в ряд Тэйлора. Приближенно это будет V(x); в следующем приближении (из-за того, что здесь стоят обычные производные) поправка равна h , умноженной на скорость изменения V по отношению к x; и т. д.:

Для экономии места я обозначил через V производную F по х. Слагаемое с h 2и все, стоящие за ним, попадают в категорию «второй и высшие порядки». И о них больше нечего беспо­коиться. Объединим все, что осталось:

Если мы теперь внимательно взглянем на это то увидим что два первых - фото 228

Если мы теперь внимательно взглянем на это то увидим что два первых - фото 229

Если мы теперь внимательно взглянем на это, то увидим, что два первых написанных здесь члена отвечают тому действию S, которое я написал бы для искомого истинного пути х. Я хочу сосредоточить ваше внимание на изменении S, т. е. на разности между S и тем S, которое получилось бы для истинного пути. Эту разность мы будем записывать как d S и назовем ее вариа­цией S. Отбрасывая «второй и высшие порядки», получаем для dS

Теперь задача выглядит так. Вот передо мной некоторый интеграл. Я не знаю еще, каково это х, но я твердо знаю, что, какую h я ни возьму, этот интеграл должен быть равен нулю. «Ну что ж,— подумаете вы,— единственная возможность для этого — это чтобы множитель при h был равен нулю». Но как быть с первым слагаемым, где есть d h /dt? Вы скажете: «Если h обращается в ничто, то и ее производная такое же ничто; зна­чит, коэффициент при d h /dt должен тоже быть нулем». Ну это не совсем верно. Это не совсем верно потому, что между откло­нением h и его производной имеется связь; они не полностью независимы, потому что h (t) должно быть нулем и при t t и при t 2 .

При решении всех задач вариационного исчисления всегда пользуются одним и тем же общим принципом. Вы чуть сдви­гаете то, что хотите варьировать (подобно тому, как это сдела­ли мы, добавляя h), бросаете взгляд на члены первого порядка, затем расставляете все так, чтобы получился интеграл в таком виде: «сдвиг (h), умноженный на что получится», но чтобы в нем не было никаких производных от h(никаких d h /dt). Не­пременно нужно так все преобразовать, чтобы осталось «нечто», умноженное на h . Сейчас вы поймете, отчего это так важно. (Существуют формулы, которые подскажут вам, как в некоторых случаях можно это проделать без каких-либо выкладок; но они не так уж общи, чтобы стоило заучивать их; лучше всего проделывать выкладки так, как это делаем мы.)

Как же я могу переделать член d h /dt, чтобы в нем появилось h? Я могу добиться этого, интегрируя по частям. Оказывается, что в вариационном исчислении весь фокус в том и состоит, чтобы расписать вариацию S и затем проинтегрировать по час­тям так, чтобы производные от h исчезли. Во всех задачах, в которых появляются производные, проделывается такой же фокус.

Припомните общий принцип интегрирования по частям Если у вас есть произвольная - фото 230

Припомните общий принцип интегрирования по частям. Если у вас есть произвольная функция f, умноженная на d h /dt и проинтегрированная по t, то вы расписываете производную от h f:

В интересующем вас интеграле стоит как раз последнее слагаемое так что В - фото 231

В интересующем вас интеграле стоит как раз последнее слага­емое, так что

В нашей формуле для dS за функцию f принимается произведение т на dxdt - фото 232

В нашей формуле для dS за функцию f принимается произ­ведение т на dx/dt; поэтому я получаю для d S выражение

В первый член должны быть подставлены пределы интегриро­вания t 1и t 2. Тогда я получу под интегралом член от интегри­рования по частям и последний член, оставшийся при преоб­разовании неизменным.

А теперь происходит то что бывает всегда проинтегрированная часть исчезает - фото 233

А теперь происходит то, что бывает всегда,— проинтегри­рованная часть исчезает. (А если не исчезает, то нужно переформулировать принцип, добавив условия, обеспечивающие такое исчезновение!) Мы уже говорили, что h на концах пути должна быть равна нулю. Ведь в чем состоит наш принцип? В том, что действие минимально при условии, что варьируемая кривая начинается и кончается в избранных точках. Это зна­чит, что h(t 1)=0 и h(t 2)=0. Поэтому проинтегрированный член получается равным нулю. Мы собираем воедино остальные члены и пишем

Вариация S теперь приобрела такой вид, какой мы хотели ей придать: что-то стоит в скобках (обозначим его F), и все это умножено на h(t)и проинтегрировано от t 1до t 2 .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




6. Электродинамика отзывы


Отзывы читателей о книге 6. Электродинамика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x