Ричард Фейнман - 6. Электродинамика
- Название:6. Электродинамика
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 6. Электродинамика краткое содержание
6. Электродинамика - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
(21.34)
Потенциалы точечного заряда в этой форме были впервые получены Льенаром и Вихертом. Их так и называют: потенциалы Льенара — Вихерта.
Чтобы замкнуть круг и вернуться к формуле (21.1), теперь нужно только подсчитать Е и В из этих потенциалов (при помощи B=СXA и Е=-Сj- dA/dt). Теперь остается одна арифметика. Впрочем, арифметика эта довольно запутанна, так что мы не будем приводить здесь детали счета. Придется поверить мне на слово, что формула (21.1) эквивалентна выведенным нами потенциалам Льенара — Вихерта.
*Если у вас достаточно времени и вам не жаль бумаги, то попытайтесь проделать это самостоятельно. Вот вам парочка советов: во-первых, не забывайте, что производные r' довольно запутанны, ведь они суть функции от t'! Во-вторых, не пытайтесь вывести формулу (21.1); лучше проделайте в ней все дифференцирования и затем сопоставьте то, что у вас получится, с выражением для Е, полученным из потенциалов (21.33) и (21.34).
§ 6. Потенциалы заряда, движущегося с постоянной скоростью; формула Лоренца
Применим теперь потенциалы Льенара — Вихерта к случаю заряда, движущегося по прямой с постоянной скоростью, и вычислим поле этого заряда. Позже мы повторим этот вывод, используя уже принцип относительности. Мы знаем величину потенциалов в той системе, в которой заряд покоится. Когда заряд движется, то все получается простым релятивистским преобразованием от одной системы к другой. Но теория относительности ведет свое начало от теории электричества и магнетизма. Формулы преобразований Лоренца [см. гл. 15 (вып. 2)]— это открытия, сделанные Лоренцем при исследовании уравнений электричества и магнетизма. И для того чтобы вы понимали, откуда все пошло, я хочу показать вам, что уравнения Максвелла действительно приводят к преобразованиям Лоренца. Я начну с вычисления потенциала равномерно движущегося заряда прямо из электродинамики, из уравнений Максвелла. Мы уже показали, что уравнения Максвелла приводят к потенциалу, полученному в предыдущем параграфе. Стало быть, пользуясь этими потенциалами, мы используем тем самым теорию Максвелла.
Пусть имеется заряд, движущийся вдоль оси х со скоростью v (фиг. 21.8). Нас интересуют потенциалы в точке Р(х, у, z). Если (=0 — момент, в который заряд проходит через начало координат, то в момент t заряд окажется в точке x—vt, y=z=0. А нам нужно знать его положение с учетом запаздывания, т. е. положение в момент
(21.35)
где r' — расстояние от заряда до точки Р в этот запаздывающий момент. В это более раннее время t' заряд был в x=vt', так что
(21.36)
Чтобы найти r' или t', это уравнение надо сопоставить с (21.35). Исключим сперва r', решив (21.35) относительно r ' и подставив в (21.36). Возвысив затем обе части в квадрат,
т. е. квадратное уравнение относительно t' . Раскрыв скобки и расположив члены по степеням t', получим
Фиг. 21.8. Определение потенциала в точке Р заряда, движущегося равномерно вдоль оси х.
Отсюда найдем
Чтобы получить r', надо это t' подставить в
Теперь мы уже можем найти j из выражения (21.33), имеющего вид
(21.38)
(ввиду того, что v постоянно).
Составляющая v в направлении r' равна v(x-vt')/r', так что v·r' просто равно v(x-vt'), а весь знаменатель равен
Подставляя (1- v 2 /c 2 )t' из (21.37), получаем
Это уравнение становится более понятным, если переписать его в виде
Векторный потенциал А — это такое же выражение, но с добавочным множителем v/c 2:
В выражении (21.39) со всей ясностью предстает перед вами начало преобразований Лоренца. Если бы заряд находился в начале координат в своей собственной системе покоя, то его потенциал имел бы вид
А мы смотрим на него из движущейся системы координат, и нам кажется, что координаты следует преобразовать с помощью формул
Это обычное преобразование Лоренца. Лоренц вывел его тем же самым способом, каким пользовались и мы.
Но что можно сказать о добавочном множителе 1/Ц(1-v 2/с 2), который появился перед дробью в (21.39)? И кроме того, как появляется векторный потенциал А, если он в системе покоя частицы повсюду равен нулю? Мы вскоре покажем, что А и j вместе составляют четырехвектор, подобно импульсу р и полной энергии U частицы. Добавка 1/Ц(1—v 2/c 2) в (21.39)—это тот самый множитель, который появляется всегда, когда преобразуют компоненты четырехвектора, так же как плотность заряда r преобразуется в r/Ц(1-v 2/c 2). Собственно из формул (21.4) и (21.5) почти очевидно, что А и j суть компоненты одного четырехвектора, потому что в гл. 13 (вып. 5) уже было показано, что j и r — компоненты четырехвектора.
Позднее мы более подробно разберем относительность в электродинамике; здесь мы хотели только показать, как естественно уравнения Максвелла приводят к преобразованиям Лоренца. Поэтому не надо удивляться, узнав, что законы электричества и магнетизма уже вполне пригодны и для теории относительности Эйнштейна. Их не нужно даже как-то особо подгонять, как это приходилось делать с ньютоновой механикой.
* С обратным знаком. См. дальше.— Прим. ред.
*Формула была выведена Р. Фейнманом в 1950 г. и приводится иногда в лекциях как удобный способ расчета синхротронного излучения .
Интервал:
Закладка: