Ричард Фейнман - 6. Электродинамика

Тут можно читать онлайн Ричард Фейнман - 6. Электродинамика - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    6. Электродинамика
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.88/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 6. Электродинамика краткое содержание

6. Электродинамика - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

6. Электродинамика - читать онлайн бесплатно полную версию (весь текст целиком)

6. Электродинамика - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(20.32)

Проделав дифференцирование, указанное в (20.32), вы убеди­тесь, что правая часть здесь та же, что и в (20.31).

Если мы хотим рассматривать сферически симметричные поля которые могут - фото 329

Если мы хотим рассматривать сферически симметричные поля, которые могут распространяться как сферические волны, то ве­личины, описывающие поля, должны быть функцией как r , так и t. Предположим, что нам нужно знать, какие функции ш(r, t) являются решениями трехмерного волнового уравне­ния

(20.33)

Поскольку шг t зависит от пространственных координат только через г то в - фото 330

Поскольку ш(г, t) зависит от пространственных координат только через г, то в качестве лапласиана можно использовать выражение (20.32). Но для точности, поскольку ш зависит также и от t, нужно дифференцирование по r записывать в виде частной производной. Волновое уравнение обращается в

Его и предстоит нам решать Оно выглядит сложнее чем в случае плоских волн Но - фото 331

Его и предстоит нам решать. Оно выглядит сложнее, чем в случае плоских волн. Но заметьте, что если умножить это урав­нение на r, то получится

(20.34)

Это уравнение говорит нам, что функция r ш удовлетворяет одномерному волновому уравнению по переменной r. Исполь­зуя часто подчеркивавшийся нами общий принцип, что у одних и тех же уравнений и решения одни и те же, мы приходим к выводу, что если r ш окажется функцией одного только (r- ct), то оно явится решением уравнения (20.34). Итак, мы обнаружи­ваем, что сферические волны обязаны иметь вид

6 Электродинамика - изображение 332

6 Электродинамика - изображение 333

Или, как мы видели раньше, можно в равной степени считать r ш имеющим форму

6 Электродинамика - изображение 334

Деля на r, находим, что характеризующая поле величина ш (чем бы она ни была) имеет вид

(20.35)

Такая функция представляет сферическую волну общего вида распространяющуюся от - фото 335

Такая функция представляет сферическую волну общего вида, распространяющуюся от начала координат со скоростью с. Если на минуту забыть об r в знаменателе, то амплитуда волны как функция расстояния от начала координат в каждый данный момент обладает определенной формой, которая рас­пространяется со скоростью с. Однако r в знаменателе говорит нам, что по мере того, как волна распространяется, ее амплиту­да убывает пропорционально 1/r. Иными словами, в отличие от плоской волны, амплитуда которой остается при движении все время одной и той же, амплитуда сферической волны бес­прерывно спадает (фиг. 20.6).

Фиг. 20.6. Сферическая волна ш=f(t-r /с)/r.

а — зависимость ш от r при t=t l и ma же волна в более поздний момент времени t 2; б — зависимость ш от t при r =r 1 и та же самая волна на расстоянии r 2.

Этот факт легко понять из про­стых физических соображений.

Мы знаем, что плотность энергии в волне зависит от квадрата амплитуды волны. По мере того как волна разбегается, ее энергия расплывается на все большую и большую площадь, пропорциональную квадрату радиуса волны. Если полная энер­гия сохраняется, плотность энергии должна убывать как 1/r 2, а амплитуда — как 1/r. Поэтому формула (20.35) для сфери­ческой волны вполне «разумна».

6 Электродинамика - изображение 336

Мы игнорировали другое возможное решение одномерного волнового уравнения

6 Электродинамика - изображение 337

или

Это тоже сферическая волна, но бегущая внутрь, от больших r к началу координат.

Тем самым мы делаем некоторое специальное предположе­ние. Мы утверждаем (без какого-либо доказательства), что волны, создаваемые источником, всегда бегут только от него. Поскольку мы знаем, что волны вызываются движением заря­дов, мы настраиваемся на то, что волны бегут от зарядов. Было бы довольно странно представлять, что прежде чем заряды были приведены в движение, сферическая волна уже вышла из бесконечности и прибыла к зарядам как раз в тот момент, когда они начали шевелиться. Такое решение возможно, но опыт по­казывает, что, когда заряды ускоряются, волны распростра­няются от зарядов, а не к ним. Хоть уравнения Максвелла предоставляют обеим волнам равные возможности, мы привле­каем добавочный факт, основанный на опыте, что «физическим смыслом» обладает только расходящаяся волна.

Нужно, однако, заметить, что из этого добавочного пред­положения вытекает интересное следствие: мы теряем при этом симметрию относительно времени, которая есть у уравнений Максвелла. Как исходные уравнения для Е и В, так и вытекающие из них волновые уравнения при изменении знака t не ме­няются. Эти уравнения утверждают, что любому решению, ко­торое отвечает волне, бегущей в одну сторону, отвечает столь же правильное решение для волны, бегущей в обратную сторону. И утверждая, что мы намерены брать в расчет только расходя­щиеся сферические волны, мы делаем тем самым важное допол­нительное предположение. (Очень тщательно изучалась такая электродинамика, в которой обходятся без этого дополнитель­ного предположения. Как это ни удивительно, но во многих обстоятельствах она не приводит к физически абсурдным ре­зультатам. Однако обсуждение этих идей теперь увлекло бы нас чересчур в сторону. Мы поговорим об этом подробнее в гл. 28.)

Нужно упомянуть еще об одном важном факте. В нашем решении для расходящейся волны (20.35) функция ш в начале ко­ординат бесконечна. Это как-то необычно. Мы бы предпочли иметь такие волновые решения, которые гладки повсюду. Наше решение физически относится к такой ситуации, когда в начале координат располагается источник. Значит, мы нечаянно сде­лали одну ошибку: наша формула (20.35) не является решением свободного волнового уравнения (20.33) повсюду; уравнение (20.33) с нулем в правой части решено повсюду, кроме начала координат. Ошибка вкралась оттого, что некоторые действия при выводе уравнения при r=0 «незаконны».

Покажем что ту же самую ошибку легко сделать и в электростатике Допустим - фото 338

Покажем, что ту же самую ошибку легко сделать и в элект­ростатике. Допустим, что нам нужно решить уравнение элек­тростатического потенциала в пустом пространстве С 2j=0. Лапласиан равен нулю, потому что мы предположили, что ни­каких зарядов нигде нет. Но как обстоит дело со сферически симметричным решением уравнения, т. е. с функцией j, зависящей только от r? Используя для лапласиана формулу (20.32), получаем

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




6. Электродинамика отзывы


Отзывы читателей о книге 6. Электродинамика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x