Ричард Фейнман - 6. Электродинамика

Тут можно читать онлайн Ричард Фейнман - 6. Электродинамика - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    6. Электродинамика
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.88/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 6. Электродинамика краткое содержание

6. Электродинамика - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

6. Электродинамика - читать онлайн бесплатно полную версию (весь текст целиком)

6. Электродинамика - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

решение суммируется следующими формулами 2025 У подобных электромагнитных - фото 312

решение суммируется следующими формулами:

(20.25)

У подобных электромагнитных волн направление вектора Е не неизменно: оно как-то произвольно смещается по спирали в плоскости yz. Но в каждой точке магнитное поле всегда пер­пендикулярно к электрическому и к направлению распростра­нения.

Если присутствуют только волны, бегущие в одном направ­лении (скажем, в положительном направлении х), то имеется простое правило, говорящее об относительной ориентации элек­трического и магнитного полей. Правило состоит в том, что век­торное произведение ЕXВ (которое, как известно, является вектором, поперечным и к Е, и к В) указывает направление, куда бежит волна. Если Е совмещать с В правым по­воротом, то вектор поворота показывает направление вектора скорости волны. (Позже мы увидим, что вектор ЕXВ имеет особый физический смысл: это вектор, описывающий течение энергии в электромагнитном поле.)

§ 2. Трехмерные волны

6 Электродинамика - изображение 313

А теперь обратимся к трехмерным волнам. Мы уже знаем, что вектор Е удовлетворяет волновому уравнению. К тому же выводу легко прийти, отправляясь прямо от уравнений Мак­свелла. Предположим, что мы исходим из уравнения

и берем ротор от обеих частей 2026 Вы помните что ротор от ротора - фото 314

и берем ротор от обеих частей:

(20.26)

Вы помните что ротор от ротора любого вектора может быть записан в виде суммы - фото 315

Вы помните, что ротор от ротора любого вектора может быть записан в виде суммы двух членов, один из которых содержит дивергенцию, а другой — лапласиан:

Но в пустом пространстве дивергенция Е равна нулю так что остается только член - фото 316

Но в пустом пространстве дивергенция Е равна нулю, так что остается только член с лапласианом. Далее, из четвертого урав­нения Максвелла в пустом пространстве [см. (20.12)] производ­ная по времени от C 2(СXB) равна второй производной Е по t:

6 Электродинамика - изображение 317

Тогда (20.26) обращается в

Это и есть трехмерное волновое уравнение Расписанное во всей красе оно - фото 318

Это и есть трехмерное волновое уравнение. Расписанное во всей красе, оно выглядит так:

Как же нам найти общее решение этого уравнения? Ответ таков: все решения трехмерного волнового уравнения могут быть представлены в виде суперпозиции уже найденных нами одномерных решений. Мы получили уравнение для волн, бегущих в направлении х, предположив, что поле не зависит от у и z. Конечно, имеются и другие решения, в которых поля не зависят от x и z,— это волны, идущие в направлении у. Затем существуют решения, не зависящие от х и y; они представляют волны, движущиеся в направлении z. Или в общем случае, поскольку мы записали наши уравнения в векторной форме, трехмерное волновое уравнение может иметь решения, которые являются плоскими волнами, бегущими, вообще говоря, в лю­бом направлении. Кроме того, раз уравнения линейны, то одновременно может распространяться сколько угодно плос­ких волн, бегущих в каких угодно направлениях. Таким об­разом, самое общее решение трехмерного волнового уравнения является суперпозицией всех видов плоских волн, бегущих во всех возможных направлениях.

Попытайтесь представить себе, как выглядят сейчас элект­рические и магнитные поля в нашей аудитории. Прежде всего здесь имеется постоянное магнитное поле; оно возникло от токов внутри нашей Земли, от постоянного земного магнетизма. За­тем здесь имеются какие-то нерегулярные, почти статические электрические поля. Они скорей всего созданы электрическими зарядами, появляющимися из-за того, что кто-то ерзает на своем стуле или трется рукавами о стол (словом, в результате тре­ния). Кроме того, здесь есть еще и другие магнитные поля, вы­званные переменными токами в электропроводке,— поля, ко­торые меняются с частотой в 50 гц в такт с работой генератора на городской электростанции. Но еще больший интерес пред­ставляют электрические и магнитные поля, меняющиеся бы­стрее. К примеру, там, где свет падает из окна, освещая стены и пол, имеются небольшие колебания электрического и маг­нитного полей, перемещающиеся за секунду на 300 000 км. По комнате еще распространяются инфракрасные волны, иду­щие от ваших горячих голов к холодной доске с формулами. Да! Мы еще позабыли об ультрафиолетовом свете, о рентгеновских лучах и о радиоволнах, которые проносятся по комнате.

Через комнату скользят электромагнитные волны, которые несут в себе джазовую музыку. Проносятся и волны, модули­рованные серией импульсов, представляющих картины собы­тий, которые происходят сейчас в других местах света, или кар­тины воображаемых явлений, происходящих при растворении воображаемого аспирина в воображаемых желудках. Чтобы убедиться в реальности этих волн, достаточно просто включить электронную аппаратуру, которая превращает эти волны в изображения и звуки.

Если мы займемся дальнейшим анализом еще более слабых колебаний, то заметим мельчайшие электромагнитные волны, пришедшие в нашу комнату с огромных расстояний. В ней суще­ствуют мельчайшие колебания электрического поля, гребни которых отстоят друг от друга примерно на фут, а источник их удален отсюда на миллионы миль. Эти волны передаются на Землю с межпланетной станции Маринер II, которая как раз проходит сейчас где-то мимо Венеры. Ее сигналы несут сводку всей той информации, которую ей удалось ухватить у планеты (информации, полученной от электромагнитных волн, дошедших от Венеры к станции).

И есть здесь еще едва заметные колебания электрических и магнитных полей от волн, возникших в миллиардах световых лет отсюда, в галактиках, находящихся в удаленнейших уголках Вселенной. В том, что это действительно так, убедились, «за­полнив комнату проволокой», т. е. соорудив антенны величиной с эту комнату. Так были замечены радиоволны, дошедшие до нас из мест, находящихся за пределами досягаемости крупней­ших оптических телескопов. Кстати, даже эти оптические телескопы всего лишь простые собиратели электромагнитных волн. А то, что мы называем звездами, лишь заключения — заключе­ния, выведенные из единственной физической реальности, ко­торую мы до сих пор от них получали, из тщательного изучения бесконечно сложных волновых движений электрических и магнитных полей, достигающих Земли.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




6. Электродинамика отзывы


Отзывы читателей о книге 6. Электродинамика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x