Ричард Фейнман - 6. Электродинамика

Тут можно читать онлайн Ричард Фейнман - 6. Электродинамика - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    6. Электродинамика
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.88/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 6. Электродинамика краткое содержание

6. Электродинамика - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

6. Электродинамика - читать онлайн бесплатно полную версию (весь текст целиком)

6. Электродинамика - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Наконец, в формуле (21.1) имеется еще третье слагаемое — вторая производная единичного вектора е r '. Изучая явление света, мы по существу использовали тот факт, что вдали от за­ряда два первых слагаемых убывают как обратный квадрат расстояния и на больших расстояниях оказываются слишком слабыми по сравнению с третьим, которое убывает как 1/r. Поэтому мы сосредоточили наше внимание на последнем сла­гаемом и показали, что оно (опять-таки на больших расстоя­ниях) пропорционально компоненте ускорения заряда, попе­речной к линии зрения. (Кроме того, почти всюду ранее мы рас­сматривали только случай, когда заряды двигались нереляти­вистски. Релятивистские эффекты рассматривались только в гл. 34, вып. 3.)

Теперь нужно попробовать связать эти две вещи. У нас есть уравнения Максвелла и есть формула (21.1) для поля точечного заряда. Естественно спросить, эквивалентны ли они? Если мы сможем вывести (21.1) из уравнений Максвелла, то действи­тельно поймем связь света с электромагнетизмом. Вывод ее и есть главная цель этой главы.

Выясняется, что полного вывода мы сделать не можем — чересчур сложные математические детали не позволят нам выйти с поля боя без потерь. Но все же мы подойдем к цели до­статочно близко, так что вы легко поймете, как может быть установлена интересующая нас связь. Мы опустим лишь неко­торые математические детали. Математика этой главы может показаться некоторым из вас довольно сложной, и, возможно, вам даже станет скучно следить внимательно за выводом. Но мы все же считаем, что очень важно связать то, что вы учили раньше, с тем, что вы изучаете сейчас, или по крайней мере продемонстрировать, как эта связь может быть установлена. Если вы не забыли прежние главы, то обратите внимание на то, что всякий раз, как мы принимали некоторое высказывание за исходную точку обсуждения, мы заботливо объясняли, является ли это высказывание новым «допущением», т. е. отражает ли оно основной закон природы или же его можно в конечном счете вывести из каких-то других законов. Дух этих лекций обя­зывает нас обсудить связь менаду светом и уравнениями Мак­свелла. Может быть, вам будет кое-где и трудно — с этим уж ничего не поделаешь: другого пути не существует.

§ 2. Сферические волны от точечного источника

6 Электродинамика - изображение 347

В гл. 18 мы установили, что уравнения Максвелла можно решать подстановкой

(21.2)

и

6 Электродинамика - изображение 348

(21.3)

где j и А обязаны удовлетворять уравнениям 214 и 215 и кроме того - фото 349

где j и А обязаны удовлетворять уравнениям

(21.4)

и 215 и кроме того условию 216 Найдем теперь решение уравнений - фото 350

и

(21.5)

и кроме того условию 216 Найдем теперь решение уравнений 214 и 215 - фото 351

и, кроме того, условию

(21.6)

Найдем теперь решение уравнений (21.4) и (21.5). Для этого надо уметь решать уравнение

217 где величина s которая называется источником известна Ясно что для - фото 352

(21.7)

где величина s (которая называется источником) известна. Ясно, что для уравнения (21.4) s соответствует r/e 0, a ш—это j, а для уравнения (21.5) s соответствует j x/e 0с 2, если ш — это А х , и т. д. Но нас интересует чисто математическая задача решения (21.7) безотносительно к тому, каков физический смысл ш и s. Там, где r и j равны нулю (это место называется «пустотой»), там потенциалы j и А и поля Е и В удовлетворяют трехмерному волновому уравнению без источников; математическая форма этого уравнения такова:

218 В гл 20 мы видели что решения этого уравнения могут представлять - фото 353

(21.8)

В гл 20 мы видели что решения этого уравнения могут представлять волны - фото 354

В гл. 20 мы видели, что решения этого уравнения могут пред­ставлять волны разных сортов: плоские волны, бегущие в x-направлении я|;=f(t-x/с); плоские волны, бегущие вдоль у или вдоль z или в любом другом направлении; сферические

(21.9)

(Решения можно записать иначе — например в виде цилиндри­ческих волн, разбегающихся от оси.)

Мы тогда заметили, что физически формула (21.9) отно­сится не совсем к пустоте: в начале координат должны быть какие-то заряды, иначе расходящаяся волна не получилась бы. Иными словами, формула (21.9) есть решение уравнения (21.8) всюду, кроме непосредственной окрестности точки r=0, где (21.9) представляет собой решение полного уравнения (21.7), в правой части которого стоят источники. Давайте те­перь посмотрим, что это за уравнение, т. е. какого рода источ­ник s в уравнении (21.7) должен вызвать волну типа (21.9).

Предположим что имеется сферическая волна 219 и поглядим во что она - фото 355

Предположим, что имеется сферическая волна (21.9) и по­глядим, во что она превращается при очень малых r. Тогда запаздыванием -r в f(t-r /с) можно пренебречь, и посколь­ку функция f плавная, ш превращается в

(21.10)

6 Электродинамика - изображение 356

Итак, ш в точности похоже на кулоново поле заряда, располо­женного в начале координат. Мы знаем, что для небольшого сгустка заряда, ограниченного очень малой областью близ на­чала координат и имеющего плотность r,

6 Электродинамика - изображение 357

где Q=∫rdV . Такой потенциал j удовлетворяет уравнению

Следуя тем же расчетам, мы должны были бы сказать, что ш из выражения (21.10) удовлетворяет уравнению

6 Электродинамика - изображение 358

(21.11)

где s связано с f формулой

6 Электродинамика - изображение 359

при

6 Электродинамика - изображение 360

Единственная разница в том, что в общем случае s, а, стало быть, и S может оказаться функцией времени.

Далее очень важно то, что если ш удовлетворяет (21.11) при малых r , то оно удовлетворяет также и (21.7). По мере приближения к началу координат зависимость шот r типа 1/r приводит к тому, что пространственные производные ста­новятся очень большими. А производные по времени остаются теми же. [Это просто производные f(t) по времени.] Так что, когда r стремится к нулю, множителем d 2 ш/dt 2 в уравнении (21.7) по сравнению с С 2ш можно пренебречь, и (21.7) становится эквивалентным уравнению (21.11).

Подытоживая можно сказать что если функция источника st из уравнения 217 - фото 361

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




6. Электродинамика отзывы


Отзывы читателей о книге 6. Электродинамика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x