Ричард Фейнман - 6. Электродинамика
- Название:6. Электродинамика
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 6. Электродинамика краткое содержание
6. Электродинамика - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Волнение было вызвано тем, что возникающую механическую силу можно использовать в машине для выполнения какой-то работы. Сразу же после этого замечательного открытия люди начали конструировать электромоторы, заставив работать на себя силы, действующие на провода с током. Принцип устройства электромотора схематически показан на фиг. 16.1. Постоянный магнит (обычно в нем имеется несколько частей из мягкого железа) создает магнитное поле внутри двух щелей. Конец каждой щели представляет собой северный или южный полюсы, как показано на схеме. Прямоугольная рамка из медной проволоки помещается так, что одной из своих сторон она попадает в каждую щель. Когда по рамке проходит ток, то в обеих щелях он идет в противоположных направлениях, так что силы оказываются направленными противоположно и создают в рамке вращательный момент вокруг изображенной на схеме оси. Если рамка закреплена на оси так, что она может вращаться, то ее можно подсоединить к шкивам или шестеренкам и заставить производить полезную работу.
Ту же идею можно использовать и при конструировании чувствительных приборов для электрических измерений.
Фиг. 16.1. Схематическое изображение простого электромагнитного мотора.
Так что немедленно после открытия закона сил точность электрических измерений намного возросла. Прежде всего вращательный момент такого мотора может быть значительно увеличен для данного тока, если заставить его проходить по нескольким виткам, а не по одному. Кроме того, рамку можно установить так, чтобы она вращалась под действием очень малого момента, укрепив ее ось в тщательно сделанных подшипниках, либо подвешивая ее на тончайшей проволоке или кварцевой нити. Тогда даже чрезвычайно слабый ток заставит катушку повернуться, и для малых углов величина поворота будет пропорциональна току. Угол поворота можно измерить, приклеив к рамке стрелку или (для очень тонких приборов) прикрепив маленькое зеркальце к рамке и отмечая сдвиг его изображения на шкале. Такие приборы называют гальванометрами. Вольтметры и амперметры работают по тому же принципу. Те же идеи могут быть применены в большом масштабе для создания мощных моторов, производящих механическую работу. Рамку можно заставить вращаться много, много раз, если с помощью укрепленных на оси контактов каждые пол-оборота менять направление тока в ней на противоположное, Тогда момент силы будет всегда направлен в одну и ту же сторону. Маленькие моторчики постоянного тока именно так и устроены. В моторах больших размеров постоянного или переменного тока постоянные магниты часто заменяют электромагнитами, и питаются они от источника электрической энергии.
Осознав, что электрический ток рождает магнитное поле, многие "сразу же предположили, что так или иначе магниты должны тоже создавать электрические поля. Для проверки этого предположения были поставлены различные эксперименты. Например, располагали два провода параллельно друг другу и по одному из них пропускали ток, пытаясь обнаружить ток в другом проводе. Мысль заключалась в том, что магнитное поле сможет как-то протащить электроны вдоль второго провода по закону, который должен формулироваться как-то так: «одинаковое стремится двигаться одинаковым образом». Но, пропуская по одному проводу самый большой ток и используя самый чувствительный гальванометр, обнаружить ток во втором проводе не удалось. Большие магниты тоже не давали никакого эффекта в расположенных поблизости проводах. Наконец, в 1840 г. Фарадей открыл существенную особенность, которую раньше упускали из виду,— электрические эффекты возникают только тогда, когда что-нибудь изменяется, Если в одной из двух проволок ток меняется, то в другой тоже наводится ток, или же если магнит движется вблизи электрического контура, то там возникает ток. Мы говорим теперь, что токи в этих случаях индуцируются. В этом и состояло явление индукции, открытое Фарадеем. Оно преобразило довольно скучную область статических полей в увлекательную динамическую область, в которой происходит огромное число удивительных явлений. Эта глава посвящена качественному описанию некоторых из них. Как мы увидим, можно довольно быстро попасть в очень сложные ситуации, трудно поддающиеся подробному количественному анализу. Но это неважно. Наша главная задача в этой главе — сначала познакомить вас с кругом относящихся сюда явлений. Тщательный анализ мы проделаем немного позже.
Из того, что мы уже знаем, нам легко понять кое-что о магнитной индукции, то, что не было известно во времена Фарадея. Мы знаем о существовании действующей на движущийся заряд силы vXВ, которая пропорциональна его скорости в магнитном поле. Пусть у нас есть проволока, которая движется вблизи магнита (фиг. 16.2), и пусть мы подсоединили концы проволоки к гальванометру. Когда проволока проходит над полюсом магнита, стрелка гальванометра сдвигается.
Магнит создает вертикальное магнитное поле, и, когда мы двигаем проволоку поперек поля, электроны в проволоке чувствуют силу, направленную вбок, т. е. перпендикулярно нолю и направлению движения. Сила толкает электроны вдоль проволоки. Но почему же при этом приходит в движение стрелка гальванометра, который расположен так далеко от этой силы? Да потому, что электроны, испытывающие магнитную силу, начинают двигаться и толкают (за счет электрического отталкивания) другие электроны, находящиеся чуть дальше по проволоке, а те в свою очередь отталкивают еще более удаленные электроны и так далее на большое расстояние.
Фиг. 16.2. Движение провода в магнитном поле создает ток (это регистрирует, гальванометр).
Любопытная штука.
Это так удивило Гаусса и Вебера, построившего впервые гальванометр, что они попытались определить, как далеко распространяются силы по проволоке. Они протянули проволоку поперек всего города, и один ее конец Гаусс присоединил к батарее (батареи были известны раньше генераторов), а Вебер наблюдал, как сдвигается стрелка гальванометра. И они обнаружили способ передавать сигналы на большое расстояние — это было рождение телеграфа! Разумеется, здесь нет прямого отношения к индукции, здесь речь шла о способе передачи тока по проволоке, о том, действительно ли ток продвигается за счет индукции или нет.
Предположим теперь, что в установке, изображенной на фиг. 16.2, мы проволоку оставляем в покое, а двигаем магнит. И снова наблюдаем эффект на гальванометре. Фарадей еще обнаружил, что движение магнита под проволокой (один способ) вызывает такой же эффект, как и движение проволоки над магнитом (другой способ). Но когда движется магнит, то на электроны проволоки уже больше не действует сила v X В. Это и есть то новое явление, которое открыл Фарадей. Сегодня мы можем попытаться понять его с помощью принципа относительности.
Читать дальшеИнтервал:
Закладка: