Ричард Фейнман - 4a. Кинетика. Теплота. Звук
- Название:4a. Кинетика. Теплота. Звук
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 4a. Кинетика. Теплота. Звук краткое содержание
4a. Кинетика. Теплота. Звук - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
§ 3. Обратимость в механике
Что же это за глубокий механический принцип, который утверждает, что при постоянстве температуры и достаточно продолжительной работе наше устройство не уйдет ни назад, ни вперед? Очевидно, мы получили фундаментальное утверждение о том, что нельзя придумать машину, которая, будучи предоставлена самой себе в течение долгого времени, охотней повернулась бы в какую-то одну определенную сторону. Попробуем выяснить, как это вытекает из законов механики.
Законы механики действуют примерно так: сила есть масса на ускорение; сила, действующая на частицу, есть сложная функция положений всех прочих частиц. Бывает, что силы зависят и от скорости, например в магнетизме, но не о них сейчас речь. Возьмем простой случай, скажем тяготение, когда силы определяются только расположением частиц. Положим, что мы решили нашу систему уравнений и получили для каждой частицы определенную траекторию x(t). Для достаточно сложных систем и решения очень сложны; с течением времени возможно появление самых невероятных конфигураций. Если мы придумаем любое, какое только нам придет в голову, расположение частиц и терпеливо подождем, то это расположение непременно наступит! Следя за решением в течение долгого времени, мы увидим, что оно как бы перепробует все, что возможно. В простейших устройствах это не обязательно, но в более или менее сложных системах с большим числом атомов такая вещь происходит.
Но решения способны и на большее. Решая уравнения движения, мы можем получить некоторую функцию, скажем t+t 2+t 3. Мы утверждаем, что другим решением будет - t+t 2 - t 3 . Иными словами, если всюду в решение подставить - t вместо t, то мы получим еще одно решение того же уравнения. Это произойдет оттого, что при замене t на - t в первоначальном дифференциальном уравнении ничего не изменится: в нем присутствуют лишь вторые производные по времени. Значит, если наблюдается некоторое движение, то возможно и точно противоположное движение. К нашему замешательству, может оказаться, когда мы следим за движением достаточно долго, что оно временами совершается в одну сторону, а временами — в обратную. Одно направление ничем не привлекательней другого. Поэтому невозможно сконструировать машину, для которой после длительной работы одно направление окажется более вероятным, чем другое, если только машина достаточно сложна.
Можно, правда, изобрести машину, для которой это утверждение явным образом неверно. Взять, например, колесо, закрутить его в пустом пространстве, и оно навсегда пойдет вертеться в одну сторону. Имеются поэтому некоторые условия, вроде сохранения момента вращения, из-за которых наши рассуждения нарушаются. Но это только означает, что наши доказательства надо проделать поаккуратней. Надо, например, учесть, что вращательный момент забирают себе стенки или еще что-то, так что специальные законы сохранения перестают действовать. Тогда опять, если система достаточно сложна, наше доказательство годится. Оно основано на обратимости законов механики.
Отдавая должное истории, мы хотели бы отметить устройство, изобретенное Максвеллом, впервые разработавшим динамическую теорию газов. Он нарисовал такую картину: пусть имеются два сосуда с газом при одной и той же температуре. Между сосудами имеется маленькое отверстие. Возле него сидит небольшой чертик (конечно, это может быть и прибор!). В отверстии есть дверца, чертик может ее открывать и закрывать. Он следит за молекулами, подлетающими слева. Как только он замечает быструю молекулу, он отворяет дверцу. Увидит медленную — и дверцу на замок! Можно сделать его чертиком высшей квалификации, пристроив на затылок ему еще пару глаз, чтобы с молекулами в другом сосуде он поступал наоборот: пропускал налево медленные, а быстрые не выпускал. Вскоре левый сосуд остынет, а правый нагреется. Спрашивается, будут ли нарушены идеи термодинамики существованием этакого чертика?
Оказывается, что если чертик конечного размера, то сам он вскоре так нагреется, что ничего не увидит. Простейшим чертиком явится, скажем, откидная дверца с пружинкой. Быстрой молекуле хватает сил открыть дверцу и проскочить, а медленной не хватит, и она отлетит прочь. Но это опять-таки знакомая нам система храповик — собачка, только в другом виде; в конце концов механизм просто нагреется. Чертик не может не нагреться, если его теплоемкость не бесконечна. В нем, во всяком случае, имеется конечное число шестеренок и колесиков, так что он не сможет отделаться от излишка тепла, которое приобретет, наблюдая молекулы. Вскоре он так начнет дрожать от броуновского движения, что не сможет сказать, что это там за молекулы, приближаются ли они, удаляются ли, словом, не сможет работать.
§ 4. Необратимость
Все ли законы физики обратимы? Конечно, нет! Попробуйте-ка, например, из яичницы слепить обратно яйцо! Или пустите фильм в обратную сторону — публика в зале тотчас же начнет смеяться. Необратимость — самая яркая черта всех событий.
Откуда же она появляется? Ведь ее нет в законах Ньютона. Если мы считаем, что любое явление может быть в конечном счете объяснено законами физики, и если также оказывается, что все уравнения обладают фантастическим свойством давать при t®-t другое решение, то ведь тогда обратимо любое явление. Но как же тогда получается, что в природе, в явлениях большого масштаба, все необратимо? Видимо, значит, есть какие-то законы, какие-то неизвестные нам, но важные уравнения, быть может, в электричестве, а может, в нейтринной физике, для которых уже существенно, куда идет время.
Рассмотрим теперь этот вопрос. Один закон такого рода мы уже знаем — он утверждает, что энтропия только растет. Когда одно тело теплое, а другое холодное, тепло переходит от теплого к холодному. Это утверждение нам подошло бы. Но хорошо бы и этот закон понять с точки зрения механики. Нам уже удалось получить при помощи чисто механических соображений все следствия из постулата о том, что тепло не может течь в обратную сторону; это помогло нам понять второй закон. Значит, необратимость из обратимых уравнений получать мы способны. Но использовали ли мы при этом только законы механики? Разберемся в этом глубже.
Так как речь зашла об энтропии, то нам придется найти ее микроскопическое описание. Когда мы говорим, что в чем-то (например, в газе) содержится определенное количество энергии, то мы можем обратиться к микроскопической картине этого явления и сказать, что каждый атом имеет определенную энергию. Полная энергия есть сумма энергий атомов. Равным образом, у каждого атома есть своя определенная энтропия. Суммируя, получим полную энтропию. На самом деле здесь все обстоит не так уж гладко, но все же давайте посмотрим, что получится.
Читать дальшеИнтервал:
Закладка: