Ричард Фейнман - 4a. Кинетика. Теплота. Звук

Тут можно читать онлайн Ричард Фейнман - 4a. Кинетика. Теплота. Звук - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    4a. Кинетика. Теплота. Звук
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.56/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 4a. Кинетика. Теплота. Звук краткое содержание

4a. Кинетика. Теплота. Звук - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

4a. Кинетика. Теплота. Звук - читать онлайн бесплатно полную версию (весь текст целиком)

4a. Кинетика. Теплота. Звук - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

§ 3. Обратимость в механике

Что же это за глубокий механический принцип, который утверждает, что при постоянстве температуры и достаточно про­должительной работе наше устройство не уйдет ни назад, ни вперед? Очевидно, мы получили фундаментальное утверждение о том, что нельзя придумать машину, которая, будучи пре­доставлена самой себе в течение долгого времени, охотней по­вернулась бы в какую-то одну определенную сторону. Попро­буем выяснить, как это вытекает из законов механики.

Законы механики действуют примерно так: сила есть масса на ускорение; сила, действующая на частицу, есть сложная функция положений всех прочих частиц. Бывает, что силы за­висят и от скорости, например в магнетизме, но не о них сейчас речь. Возьмем простой случай, скажем тяготение, когда силы определяются только расположением частиц. Положим, что мы решили нашу систему уравнений и получили для каждой части­цы определенную траекторию x(t). Для достаточно сложных систем и решения очень сложны; с течением времени возможно появление самых невероятных конфигураций. Если мы приду­маем любое, какое только нам придет в голову, расположение частиц и терпеливо подождем, то это расположение непременно наступит! Следя за решением в течение долгого времени, мы увидим, что оно как бы перепробует все, что возможно. В про­стейших устройствах это не обязательно, но в более или менее сложных системах с большим числом атомов такая вещь про­исходит.

Но решения способны и на большее. Решая уравнения дви­жения, мы можем получить некоторую функцию, скажем t+t 2+t 3. Мы утверждаем, что другим решением будет - t+t 2 - t 3 . Иными словами, если всюду в решение подставить - t вместо t, то мы получим еще одно решение того же уравнения. Это произойдет оттого, что при замене t на - t в первоначальном дифференциальном уравнении ничего не изменится: в нем при­сутствуют лишь вторые производные по времени. Значит, если наблюдается некоторое движение, то возможно и точно проти­воположное движение. К нашему замешательству, может ока­заться, когда мы следим за движением достаточно долго, что оно временами совершается в одну сторону, а временами — в обрат­ную. Одно направление ничем не привлекательней другого. Поэтому невозможно сконструировать машину, для которой после длительной работы одно направление окажется более вероятным, чем другое, если только машина достаточно сложна.

Можно, правда, изобрести машину, для которой это утверж­дение явным образом неверно. Взять, например, колесо, закру­тить его в пустом пространстве, и оно навсегда пойдет вертеться в одну сторону. Имеются поэтому некоторые условия, вроде сохранения момента вращения, из-за которых наши рассужде­ния нарушаются. Но это только означает, что наши доказатель­ства надо проделать поаккуратней. Надо, например, учесть, что вращательный момент забирают себе стенки или еще что-то, так что специальные законы сохранения перестают действовать. Тогда опять, если система достаточно сложна, наше доказатель­ство годится. Оно основано на обратимости законов механики.

Отдавая должное истории, мы хотели бы отметить устрой­ство, изобретенное Максвеллом, впервые разработавшим дина­мическую теорию газов. Он нарисовал такую картину: пусть имеются два сосуда с газом при одной и той же температуре. Между сосудами имеется маленькое отверстие. Возле него сидит небольшой чертик (конечно, это может быть и прибор!). В от­верстии есть дверца, чертик может ее открывать и закрывать. Он следит за молекулами, подлетающими слева. Как только он замечает быструю молекулу, он отворяет дверцу. Увидит мед­ленную — и дверцу на замок! Можно сделать его чертиком высшей квалификации, пристроив на затылок ему еще пару глаз, чтобы с молекулами в другом сосуде он поступал наобо­рот: пропускал налево медленные, а быстрые не выпускал. Вскоре левый сосуд остынет, а правый нагреется. Спраши­вается, будут ли нарушены идеи термодинамики существова­нием этакого чертика?

Оказывается, что если чертик конечного размера, то сам он вскоре так нагреется, что ничего не увидит. Простейшим чертиком явится, скажем, откидная дверца с пружинкой. Бы­строй молекуле хватает сил открыть дверцу и проскочить, а медленной не хватит, и она отлетит прочь. Но это опять-таки знакомая нам система храповик — собачка, только в другом виде; в конце концов механизм просто нагреется. Чертик не может не нагреться, если его теплоемкость не бесконечна. В нем, во всяком случае, имеется конечное число шестеренок и коле­сиков, так что он не сможет отделаться от излишка тепла, кото­рое приобретет, наблюдая молекулы. Вскоре он так начнет дрожать от броуновского движения, что не сможет сказать, что это там за молекулы, приближаются ли они, удаляются ли, словом, не сможет работать.

§ 4. Необратимость

Все ли законы физики обратимы? Конечно, нет! Попробуйте-ка, например, из яичницы слепить обратно яйцо! Или пустите фильм в обратную сторону — публика в зале тотчас же начнет смеяться. Необратимость — самая яркая черта всех событий.

Откуда же она появляется? Ведь ее нет в законах Ньютона. Если мы считаем, что любое явление может быть в конечном счете объяснено законами физики, и если также оказывается, что все уравнения обладают фантастическим свойством давать при t®-t другое решение, то ведь тогда обратимо любое явление. Но как же тогда получается, что в природе, в явлениях большого масштаба, все необратимо? Видимо, значит, есть какие-то законы, какие-то неизвестные нам, но важные уравне­ния, быть может, в электричестве, а может, в нейтринной фи­зике, для которых уже существенно, куда идет время.

Рассмотрим теперь этот вопрос. Один закон такого рода мы уже знаем — он утверждает, что энтропия только растет. Когда одно тело теплое, а другое холодное, тепло переходит от теплого к холодному. Это утверждение нам подошло бы. Но хорошо бы и этот закон понять с точки зрения механики. Нам уже удалось получить при помощи чисто механических соображений все следствия из постулата о том, что тепло не может течь в обрат­ную сторону; это помогло нам понять второй закон. Значит, не­обратимость из обратимых уравнений получать мы способны. Но использовали ли мы при этом только законы механики? Раз­беремся в этом глубже.

Так как речь зашла об энтропии, то нам придется найти ее микроскопическое описание. Когда мы говорим, что в чем-то (например, в газе) содержится определенное количество энер­гии, то мы можем обратиться к микроскопической картине этого явления и сказать, что каждый атом имеет определенную энергию. Полная энергия есть сумма энергий атомов. Равным образом, у каждого атома есть своя определенная энтропия. Суммируя, получим полную энтропию. На самом деле здесь все обстоит не так уж гладко, но все же давайте посмотрим, что получится.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




4a. Кинетика. Теплота. Звук отзывы


Отзывы читателей о книге 4a. Кинетика. Теплота. Звук, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x