Ричард Фейнман - 4a. Кинетика. Теплота. Звук

Тут можно читать онлайн Ричард Фейнман - 4a. Кинетика. Теплота. Звук - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    4a. Кинетика. Теплота. Звук
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.56/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 4a. Кинетика. Теплота. Звук краткое содержание

4a. Кинетика. Теплота. Звук - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

4a. Кинетика. Теплота. Звук - читать онлайн бесплатно полную версию (весь текст целиком)

4a. Кинетика. Теплота. Звук - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как уже говорилось, мы рассмотрим волну в одном измере­нии. Так можно поступить, если мы находимся достаточно да­леко от источника и так называемый фронт волны мало отли­чается от плоскости. На этом примере наше доказательство будет проще, поскольку можно сказать, что смещение c зависит только от х и t, а не от у и z. Поэтому поведение воздуха опи­сывается функцией c (х, t).

Насколько полно такое описание? Казалось бы, оно очень не полно, потому что нам не известны подробности движения молекул воздуха. Они движутся во всех направлениях, и этот факт не отражается функцией c (х, t). С точки зрения кинетиче­ской теории, если в одном месте наблюдается большая плот­ность молекул, а в соседнем меньшая, молекулы будут перехо­дить из области с большей плотностью в область с меньшей плотностью, так чтобы уравнять плотности. Очевидно, что при этом никаких колебаний не происходит и звук не возникает. Для получения звуковой волны нужно, чтобы молекулы, вы­летая из области с большей плотностью и давлением, переда-пали импульс другим молекулам, находящимся в области раз­режения. Звук возникает в том случае, если размеры области изменения плотности и давления намного больше расстояния, проходимого молекулами до соударения с другими молекулами. Это расстояние есть длина свободного пробега, и оно должно быть много меньше расстояния между гребнями и впадинами давления. В противном случае молекулы перейдут из гребня во впадину, и волна моментально выровняется.

Мы, естественно, хотим описать поведение газа в масштабе, большем, чем длина свободного пробега, так что свойства газа не будут определяться поведением отдельных молекул. Напри­мер, смещение есть смещение центра инерции небольшого объема газа, а давление или плотность относятся к этому же объему. Мы обозначим давление через Р, а плотность через r, причем обе величины будут функциями от х и t. Необходимо помнить, что наше описание приближенное и справедливо лишь, когда свойства газа не слишком быстро меняются с расстоянием.

§ 3. Волновое уравнение

Итак, физические явления, происходящие в звуковой волне, обладают следующими тремя свойствами:

I. Газ движется, и плотность его меняется. II. При изменении плотности меняется и давление. III. Неравномерное распределение давления вызывает дви­жение газа.

Рассмотрим сначала свойство П. Для любого газа, жидкости или твердого тела давление является функцией плотности. До прихода звуковой волны мы имели равновесное состояние с давлением Р 0и плотностью r. Давление Р зависит от плот­ности среды: Р=f(r), и в частности равновесное давление Р 0=f(r 0). Отклонения величины давления от равновесного в звуковой волне очень малы. Давление удобно измерять в барах (1 бар=10 5 н/м 2). Давление в одну стандартную атмосферу приб­лизительно равно 1 бар (1 атм=1,0133 бар). Для звука обычно используется логарифмическая шкала интенсивности, так как восприятие уха, грубо говоря, растет логарифмически. В этой децибельной шкале уровень звукового давления I связан с амплитудой звукового давления:

I =20log 10(P/P отн) дб, (47.1)

где давление отнесено к некоторому стандартному давлению Р отн=2·10 -10 бар.

Звуковое давление Р=10 3Р отн=2·10 -7бар соответствует довольно сильному звуку в 60 дб. Мы видим, что давление ме­няется в звуковой волне на очень малую величину по сравнению с равновесным или средним, равным 1 атм. Смещение и перепады плотности также очень малы. При взрывах, однако, изменения уже не столь малы; избыточное звуковое давление может пре­вышать 1 атм. Такие большие перепады давления приводят к новым явлениям, которые мы рассмотрим позже. В звуковых волнах уровень силы звука выше 100 дб встречается редко; уровень силы звука в 120 дб уже вызывает боль в ушах. Поэто­му, написав для звуковой волны

Р=Р 0+Р u, r = r 0+r u, (47.2)

можно считать, что изменение давления P u очень мало по сравнению с P 0, а изменение плотности r uочень мало по сравнению с r 0. Тогда

P 0+ Р u = f(r 0+r u)=f(r 0)+ r uf'(r 0), (47.3)

где P 0= f(r 0) и f'(r 0) — производная от f(r), взятая при значении r =r 0. Второе равенство здесь возможно только потому, что r uочень мало. Таким образом, мы находим, что избыточное давление P u пропорционально избыточной плот­ности r u; коэффициент пропорциональности обозначается через к:

(II) Р u=cr u, где c=f'(r 0)=(dP/dr) 0. (47.4)

Это весьма простое соотношение и составляет точное содержа­ние свойства II.

Перейдем теперь к свойству I. Предположим, что положение элемента объема воздуха, не возмущенного звуковой волной, есть х, а звук смещает его в момент времени t на величину c (х,t), так что его новое положение есть x+c(x,t), как показано на фиг. 47.3.

Фиг 473 Смещение воздуха в точке х есть c хt а в точке хDx равно - фото 8

Фиг. 47.3. Смещение воздуха в точке х есть c (х,t), а в точке х+Dx равно c(x+Dx,t).

Первоначальный объем, приходящийся на единицу площади в плоской звуковой волне, есть Dx, а окончательный объем равен Dx+c(x+Dx,t)-c(x,t).

Далее, положение соседнего элемента объема есть х+Dx, и его смещенное положение есть х+Dx+c(х+Dx,t). Теперь можно найти изменение плотности. Поскольку мы рас­сматриваем плоскую волну, удобно взять единичную площадку, перпендикулярную оси х, т. е. направлению распространения волны. Количество воздуха, приходящееся на единичную площадку в интервале D x, есть r 0 D x, где r 0— невозмущенная, или равновесная, плотность воздуха. Эта порция воздуха, сме­щенная звуковой волной, будет находиться теперь между x+c (x,t) и x+ D х+ c (х+Dx,t), причем количество воздуха в этом интервале то же самое, что в интервале D x до прихода волны. Если через r обозначить новую плотность, то

r 0 Dx= r [x+Dx+c (x+Dx,t)-x-c (x,t)]. (47.5)

Поскольку D x мало, можно написать c (x+ D x, t)-c (x,t)=( дc/дx ) D x. Здесь уже появляется частная производная, потому что c зависит и от x, и от времени. Наше уравнение принимает вид

r 0 D x =r (( дc / д x) D x + D x), (47.6)

или

r 0=(r 0+r u) дc / д x+r 0+r u. (47.7)

Но в звуковой волне все изменения малы, так что r uмало, c мало и дc/дх тоже мало. Поэтому в уравнении, которое мы только что написали,

r u=-r 0( дc / д x)- r u( дc / д x), (47.8)

можно пренебречь r u (дc/дх) по сравнению с r 0 (дc/дх). Так мы приходим к соотношению, которое требовалось согласно свойству I:

(I) r u=-r 0 д c/ д x. (47.9)

Именно такой вид уравнения можно было ожидать из чисто физических соображений. Если смещение различно для разных х, плотность будет изменяться. Знак тоже правильный: если сме­щение c растет с ростом х, так что воздух расширяется, плотность должна уменьшаться.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




4a. Кинетика. Теплота. Звук отзывы


Отзывы читателей о книге 4a. Кинетика. Теплота. Звук, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x