Ричард Фейнман - 4a. Кинетика. Теплота. Звук

Тут можно читать онлайн Ричард Фейнман - 4a. Кинетика. Теплота. Звук - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    4a. Кинетика. Теплота. Звук
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.56/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 4a. Кинетика. Теплота. Звук краткое содержание

4a. Кинетика. Теплота. Звук - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

4a. Кинетика. Теплота. Звук - читать онлайн бесплатно полную версию (весь текст целиком)

4a. Кинетика. Теплота. Звук - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Итак, для звука истинная скорость изменения давления с плотностью должна вычисляться без учета отвода тепла. Это соответствует адиабатическому изменению давления, для ко­торого мы нашли, что PV g=const, где V — объем. Поскольку плотность r обратно пропорциональна объему, связь P и r для адиабатических процессов дается соотношением

P=const·r g, (47.22)

откуда мы получаем dP/d r =gP/ r . Тогда для скорости звука возникает соотношение

c 2 s=gP/r. (47.23)

Можно еще написать с 2 s= gPV/rV и использовать соотноше­ние PV=NkT. Мы видим, кроме того, что rV есть масса газа, которую можно записать как Nm или m , где m — масса молекулы, а m — молекулярный вес. Таким образом, находим

откуда видно что скорость звука зависит только от температуры газа и не - фото 17

откуда видно, что скорость звука зависит только от темпе­ратуры газа и не зависит от давления или плотности. Мы уже отмечали, что

kT= 1/ 3m2>, (47.25)

где 2 средняя квадратичная скорость молекул Отсюда следует что с 2 sg3 - фото 18

где 2> — средняя квадратичная скорость молекул. Отсюда следует, что с 2 s=g/3 2>, или

Это равенство означает, что скорость звука есть средняя ско­рость молекул воздуха (точнее, корень квадратный из средней квадратичной скорости), умноженная на некоторое число, грубо говоря, на 1/(3) 1 / 2. Другими словами, она того же порядка величины, что и скорость молекул, но на самом деле несколько меньше средней скорости молекул.

В общем-то мы могли этого ожидать, потому что такое воз­мущение, как изменение плотности, передается в конечном счете движением молекул. Однако подобного рода соображения не подсказывают нам точного значения скорости; могло ведь оказаться, что звук переносится самыми быстрыми или самыми медленными молекулами. Разумно и весьма утешительно, что скорость звука оказалась равной приблизительно половине средней молекулярной скорости.

* При таком выборе P отн Р — уже не максимальная амплитуда зву­кового давления, а «среднее квадратичное» давление, равное максималь­ному, деленному на 1/Ц2.

Глава 48

БИЕНИЯ

§ 1. Сложение двух волн

§ 2. Некоторые замечания о биениях и модуляции

§ 3. Боковые полосы

§ 4. Локализован­ный волновой пакет

§ 5. Амплитуда вероятности частиц

§ 6. Волны в простран­стве трех измерений

§ 7. Собственные колебания

§ 1. Сложение двух волн

Не так давно мы довольно подробно обсуж­дали свойства световых волн и их интерферен­цию, т. е. эффект суперпозиции двух волн от различных источников. Но при этом пред­полагалось, что частоты источников оди­наковы. В этой же главе мы остановимся на некоторых явлениях, возникающих при интер­ференции двух источников с различными ча­стотами.

Нетрудно догадаться, что при этом произой­дет. Действуя так же, как прежде, давайте предположим, что имеются два одинаковых осциллирующих источника с одной и той же частотой, причем фазы их подобраны так, что в некоторую точку Р сигналы приходят с оди­наковой фазой. Если это свет, то в этой точке он очень ярок, если это звук, то он очень громок, а если это электроны, то их очень много. С другой стороны, если приходящие волны отличаются по фазе на 180°, то в точке Р не будет никаких сигналов, ибо полная амплитуда будет иметь здесь минимум. Предположим теперь, что некто крутит ручку «регулировка фазы» одного из источников и меняет разность фаз в точке Р то туда, то сюда, скажем сначала он делает ее нулевой, затем — равной 180° и т. д. При этом, разумеется, будет меняться и сила приходящего сигнала. Ясно теперь, что если фаза одного из источников медленно, постоянно и равномерно меняется по сравнению с другим, начиная с нуля, а затем возрастает постепенно до 10, 20, 30, 40° и т. д., то в точке Р мы увидим ряд слабых и сильных «пульсаций», ибо когда разность фаз проходит через 360°, в амплитуде снова возникает максимум. Но утверждение, что один источник с постоянной скоростью меняет свою фазу по отношению к другому, равносильно утверждению, что число колебаний в 1 сек у этих двух источников несколько различно.

Итак, теперь известен ответ: если взять два источника, ча­стоты которых немного различны, то в результате сложения получаются колебания с медленно пульсирующей интенсив­ностью. Иначе говоря, все сказанное здесь действительно имеет отношение к делу!

Этот результат легко получить и математически. Предположим, например, что у нас есть две волны и забудем на минуту о всех пространственных соотношениях, а просто посмотрим, что приходит в точку Р. Пусть от одного источника приходит волна cosw 1t, а от другого — волна cosw 2t, причем обе частоты w 1и w 2не равны в точности друг другу. Разумеется, амплитуды их тоже могут быть различными, но сначала давайте предположим, что амплитуды равны. Общую задачу мы рассмотрим позднее. Полная амплитуда в точке Р при этом будет суммой двух косинусов. Если мы построим график зависимости амплитуды от вре­мени, как это показано на фиг.48.1,то окажется, что, когда гребни двух волн совпадают, получается большое отклонение, когда совпадают гребень и впадина — практически нуль, а когда гребни снова совпадают, вновь получается большая волна.

Фиг 481 Суперпозиция двух косинусообразных волн с отношением частот 810 - фото 19

Фиг. 48.1. Суперпозиция двух косинусообразных волн с отношением частот 8:10. Точное повторение колебаний внутри каждого биения для общего случая не типично.

Математически нам нужно взять сумму двух косинусов и как-то ее перестроить. Для этого потребуются некоторые полез­ные соотношения между косинусами. Давайте получим их. Вы знаете, конечно, что

e i ( a + b )=e iae ib (48.1)

и что вещественная часть экспоненты e ia равна cosа, а мни­мая часть равна sin а. Если мы возьмем вещественную часть ехр [-i (a+b)], то получим cos (a +b), а для произведения

e ia e ib =(cos a+i sin a) (cos b+i sin b)

мы получаем cos a cos b- sinasinb плюс некоторая мнимая добавка. Сейчас, однако, нам нужна только вещественная часть. Таким образом,

cos (a+b) =cos a cos b- sin a sin b. (48.2)

Если теперь изменить знак величины b, то, поскольку коси­нус при этом не изменяет знака, а синус изменяет знак на обратный, мы получаем аналогичное выражение для косинуса разности

cos (a-b) =cos a cos b+ sin a sin b. (48.3)

После сложения этих двух уравнений произведение синусов сократится, и мы находим, что произведение двух косинусов равно половине косинуса суммы плюс половина косинуса разности

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




4a. Кинетика. Теплота. Звук отзывы


Отзывы читателей о книге 4a. Кинетика. Теплота. Звук, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x