Ричард Фейнман - 4a. Кинетика. Теплота. Звук

Тут можно читать онлайн Ричард Фейнман - 4a. Кинетика. Теплота. Звук - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    4a. Кинетика. Теплота. Звук
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.56/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 4a. Кинетика. Теплота. Звук краткое содержание

4a. Кинетика. Теплота. Звук - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

4a. Кинетика. Теплота. Звук - читать онлайн бесплатно полную версию (весь текст целиком)

4a. Кинетика. Теплота. Звук - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Теперь нам нужно найти третье уравнение — уравнение движения, производимого избытком давления. Зная соотноше­ние между силой и давлением, можно получить уравнение дви­жения. Возьмем объем воздуха толщиной Dx и с единичной пло­щадью грани, перпендикулярной х, тогда масса воздуха в этом объеме есть r 0Dx, а ускорение воздуха есть д 2 c /дt 2 , так что масса, умноженная на ускорение для этого слоя, есть r 0Dx( д 2c/ д t 2). (Если Dx; мало, то безразлично, где брать ускорение — на краю слоя или где-нибудь посредине.) Сила, действующая на единич­ную площадку нашего слоя, перпендикулярную оси x, должна быть равна r 0Dx( д 2хc/ д t 2). В точке х мы имеем силу Р(х,t), дей­ствующую на единицу площади в направлении + х, а в точке x+Dx; возникает сила в обратном направлении, по величине равная Р(x;+ Dx, t) (фиг. 47.4):

Фиг 474 Результирующая сила в направлении оси х возникающая за счет - фото 9

Фиг. 47.4. Результирующая сила в направлении оси х, возникающая за счет давления на единичную площадку, перпендикулярную к оси х, есть — (дР/дх)Dx.

Р(х, t)-P(x+ D x, t )=-( д P/ д x) Dx=( д P u/ д x) Dx. (47.10)

Мы учли, что Dx; мало и что только избыточное давление Р и меняется в зависимости от х. Итак, согласно свойству III мы получаем

(III) r 0= д 2c/ д t 2=- д P u/ д x. (47.11)

Теперь уже уравнений достаточно, чтобы увязать все вели­чины и привести к одной переменной, скажем х. Можно выразить Р u в (47.11) с помощью (47.4):

r 0 д 2c/ д t 2-c д r u/ д x (47.12)

а затем исключить r uс помощью (I). Тогда r 0сократится и у нас останется

д 2c/ д t 2=x д 2c/ д x 2. (47.13)

Обозначим с 2 s =x , тогда можно написать

Это и есть волновое уравнение которое описывает распространение звука в - фото 10

Это и есть волновое уравнение, которое описывает распростра­нение звука в среде.

§ 4. Решения волнового уравнения

Посмотрим теперь, действительно ли волновое уравнение описывает основные свойства звуковых волн в среде. Прежде всего мы хотим вывести, что звуковое колебание, или возмуще­ние, движется с постоянной скоростью. Кроме того, нам нужно доказать, что два различных колебания могут свободно прохо­дить друг через друга, т. е. принцип суперпозиции. Мы хотим еще доказать, что звук может распространяться и вправо и влево. Все эти свойства должны содержаться в нашем одном урав­нении.

Раньше мы отмечали что любое возмущение имеющее вид плоской волны и - фото 11

Раньше мы отмечали, что любое возмущение, имеющее вид плоской волны и движущееся с постоянной скоростью, записы­вается в виде f(x-vt). Посмотрим теперь, является ли f(x-vt) решением волнового уравнения. Вычисляя дc/дх, получаем производную функции dcldx=f'(x-vt). Дифференцируя еще раз, находим

Дифференцируя эту же функцию c по t получаем значение V умноженное на - фото 12

Дифференцируя эту же функцию c по t, получаем значение — V, умноженное на производную, или д c /dt=-vf (x-vt); вторая производная по времени дает

Очевидно, что f(х-vt) удовлетворяет волновому уравнению, если v равно c s .

Таким образом, из законов механики мы получаем, что любое звуковое возмущение распространяется со скоростью c s и, кроме того,

тем самым мы связали скорость звуковых волн со свойствами среды.

Легко увидеть что звуковая волна может распространяться и в направлении - фото 13

Легко увидеть, что звуковая волна может распространяться: и в направлении отрицательных х, т. е. звуковое возмущений вида c (х, t)=g(x+vt) также удовлетворяет волновому уравнению. Единственное отличие этой волны от той, которая распростра­нялась слева направо, заключается в знаке v, но знак д 2 c/dt 2 не зависит от выбора x+vt или х-vt, потому что в эту производ­ную входит только v 2. Отсюда следует, что решение уравнения описывает волны, бегущие в любом направлении со скоростью c s .

Особый интерес представляет вопрос о суперпозиции решений. Допустим, мы нашли одно решение, скажем c 1 . Это значит, что вторая производная 3d по х равна второй производной c 1по t 1, умноженной на 1/с 2 s . И пусть есть второе решение c 2, обладаю­щее тем же свойством. Сложим эти два решения, тогда полу­чается

c (x, t)= c 1(x, t) + c 2(x, t). (47.17)

Теперь мы хотим удостовериться что c х t тоже представляет некую волну т - фото 14

Теперь мы хотим удостовериться, что c (х, t) тоже представ­ляет некую волну, т. е. c тоже удовлетворяет волновому уравнению. Это очень просто доказать, так как

и вдобавок Отсюда следует что d 2 cdx 2 lc 2 s д 2 cdt 2 так что - фото 15

и вдобавок

Отсюда следует, что d 2 c/dx 2 =(l/c 2 s 2 c/dt 2 , так что справедли­вость принципа суперпозиции проверена. Само существование принципа суперпозиции связано с тем, что волновое уравнение линейно по c.

Теперь естественно было бы ожидать что плоская световая волна - фото 16

Теперь естественно было бы ожидать, что плоская световая волна, распространяющаяся вдоль оси х и поляризованная так, что электрическое поле направлено по оси y , тоже удовлет­воряет волновому уравнению

где с — скорость света. Волновое уравнение для световой волны есть одно из следствий уравнений Максвелла. Уравнения элект­родинамики приводят к волновому уравнению для света точно так же, как уравнения механики приводят к волновому урав­нению для звука.

§ 5. Скорость звука

При выводе волнового уравнения для звука мы получили формулу, которая связывает при нормальном давлении скорость движения волны и относительное изменение давления с плотностью: с 2 s =(dP/dr) 0 . (47.21) Чтобы оценить скорость изменения давления, очень важно знать, как при этом меняется температура. Можно ожидать, что в местах сгущения звуковой волны температура повысится, а в местах разрежения — понизится. Ньютон первым вычислил скорость изменения давления с плотностью, предположив, что температура при этом не меняется. Он считал, что тепло пере­дается из одной области звуковой волны в другую так быстро, что температура измениться не успеет. Способ Ньютона дает изотермическую скорость звука, что неправильно. Правильное вычисление было сделано позже Лапласом, считавшим вопреки Ньютону, что давление и температура в звуковой волне меня­ются адиабатически. Поток тепла из области сгущения в область разрежения пренебрежимо мал, если только длина волны ве­лика по сравнению с длиной свободного пробега. При этих условиях ничтожная утечка тепла в звуковой волне не влияет на скорость звука, хотя и приводит к небольшому поглощению звуковой энергии. Мы можем, естественно, ожидать, что погло­щение тепла усилится, когда длина волны приблизится к длине свободного пробега, но такие длины волн примерно в миллион раз меньше длины волны слышимого звука.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




4a. Кинетика. Теплота. Звук отзывы


Отзывы читателей о книге 4a. Кинетика. Теплота. Звук, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x