Ричард Фейнман - 4a. Кинетика. Теплота. Звук

Тут можно читать онлайн Ричард Фейнман - 4a. Кинетика. Теплота. Звук - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    4a. Кинетика. Теплота. Звук
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.56/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 4a. Кинетика. Теплота. Звук краткое содержание

4a. Кинетика. Теплота. Звук - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

4a. Кинетика. Теплота. Звук - читать онлайн бесплатно полную версию (весь текст целиком)

4a. Кинетика. Теплота. Звук - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

cos a cos b= 1 / 2 cos + b)+ 1 / 2 cos (a-b). (48.4)

Теперь можно обернуть это выражение и получить формулу для cosa+cosb, если просто положить a = а+b, a b= а- b, т. е. a = 1/ 2(a+b), a b= 1/ 2(a-b):

cosa+cosb=2cos 1/ 2(a+b) cos 1/ 2(a-b). (48.5)

Но вернемся к нашей проблеме. Сумма cosw 1t и cosw 2t равна

cosw 1t+cosw 2t=2cos 1/ 2(w 1+w 2)tcos 1/ 2(w 1-w 2)t. (48.6)

Пусть теперь частоты приблизительно одинаковы, так что 1/ 2(w 1+w 2) равна какой-то средней частоте, которая более или менее та же, что и каждая из них. Но разность w 1-w 2 гораздо меньше, чем w 1и w 2, поскольку мы предположили, что w 1и w 2приблизительно равны друг другу. Это означает, что результат сложения можно истолковать так, как будто есть косинусообразная волна с частотой, более или менее равной пер­воначальным, но что «размах» ее медленно меняется: он пульси­рует с частотой, равной 1 l 2 ( w 1 - w 2 )- Но та ли это частота, с которой мы слышим биения? Уравнение (48.6) говорит, что амплитуда ведет себя как cos 1/ 2(w 1-w 2), и это надо понимать так, что высокочастотные колебания заключены между двумя косинусоидами с противоположными знаками (пунктирная линия на фиг. 48.1). Хотя амплитуда действительно меняется с частотой 1/ 2(w 1-w 2), однако если речь идет об интенсивности волн, то мы должны представлять себе частоту в два раза боль­шую. Иначе говоря, модуляция амплитуды в смысле ее интен­сивности происходит с частотой w 1-w 2, хотя мы и умножаем на косинус половинной частоты.

Пренебрегая этими небольшими усложнениями, мы можем заключить, что если складывать две волны с частотами w 1и w 2, то получим волну с частотой, равной средней частоте 1/ 2(w 1+w 2), «сила» которой осциллирует с частотой w 1-w 2.

Если амплитуды двух волн различны то можно конечно повторить все вычисления - фото 20

Если амплитуды двух волн различны, то можно, конечно, повторить все вычисления снова, умножив предварительно косинусы на различные амплитуды А 1 и А 2 и произведя массу всяких математических вычислений, перестроек и т. п. с исполь­зованием уравнений, подобных (48.2) — (48.5). Однако есть и другой, более легкий путь провести этот же анализ. Известно, например, что гораздо легче работать с экспонентами, чем с синусами и косинусами, поэтому можно представить A 1созw 1t как реальную часть экспоненты А 1 ехр (i w 1 t). Подобным же обра­зом вторая волна будет реальной частью A 2ехр(iw 2t). После сложения этих экспонент A 1exp (i w 1 t)+ A 2exp(iw 2t) и выделения в качестве множителя экспоненты со средней частотой мы получим

т. е. снова оказывается, что высокочастотная волна модули­руется малой частотой.

§ 2. Некоторые замечания о биениях и модуляции

Предположим теперь, что нас интересует интенсивность волны, описываемой уравнением (48.7). Чтобы найти ее, нужно взять квадрат абсолютной величины либо правой, либо левой части этого уравнения. Давайте возьмем левую часть. Интен­сивность при этом будет равна

I = A 2 1 +A 2 2 + 2A 1 A 2 cos( w l - w 2 )t. (48.8)

Видите, интенсивность возрастает и падает с частотой w 1-w 2, изменяясь в пределах между 1 + A 2 ) 2 и 1 -A 2 ) 2 . Если А 1 №А 2 , то минимальная интенсивность не равна нулю.

Те же результаты можно получить и другим путемс помощью схем подобных фиг - фото 21

Те же результаты можно получить и другим путем—с по­мощью схем, подобных фиг. 48.2.

Фиг. 48.2. Результат сложения двух комплексных векторов с рав­ными частотами.

Изобразим одну из волн в виде вектора длиной A 1в комплексной плоскости, вращающе­гося с угловой скоростью w 1. Вторую волну изобразим другим вектором, длина которого A 2, а угловая скорость вращения w 2. Если эти частоты в точности равны между собой, то мы по­лучим вращающийся вектор, длина которого все время по­стоянна. Так что интенсивность в этом случае будет все время постоянной фиксированной величиной. Если, однако, частоты хоть немного отличаются одна от другой, то эти два вектора будут крутиться с различными скоростями.

На фиг. 48.3 показано, как выглядит вся картина «с точки зрения» вектора A 1exp(iw 1t).

Фиг 483 Результат сложения двух комплексных векторов с различными частотами - фото 22

Фиг. 48.3. Результат сложения двух комплексных векторов с раз­личными частотами во вращаю­щейся системе отсчета первого вектора.

Показаны девять последовательных по­ложений медленно вращающегося век­тора.

Мы видим, что вектор А 2 медленно «отворачивается» от вектора А 1 , так что амплитуда, получаемая при сложении этих векторов, сначала велика, а затем, когда второй вектор совсем «отвернется» в другую сторону, т. е. когда угол между ними станет 180°, она будет особенно мала, и т. д. Вектор крутится, амплитуда суммы векторов становится то больше, то меньше, а интенсивность пульсирует. Идея срав­нительно простая, и ее можно реализовать множеством раз­личных способов. Этот эффект очень легко наблюдать экспери­ментально. Можно установить, например, два громкоговори­теля, каждый из которых связан со своим генератором коле­баний и может давать свой собственный тон. Таким образом, мы принимаем один сигнал от первого источника, а другой сигнал от второго. Если частоты этих сигналов в точности одинаковы, то в результате в каждой точке пространства полу­чится эффект определенной силы. Но если генераторы немного расстроить, то мы услышим некоторые изменения интенсив­ности. Чем больше мы расстраиваем генераторы, тем более быстрыми будут изменения силы звука. Однако уху становится трудно уследить за изменениями, скорость которых превышает 10 колебаний в секунду или что-то около этого.

Тот же эффект можно наблюдать и на осциллографе, кото­рый просто показывает сумму токов двух генераторов. Если частота пульсаций сравнительно мала, то мы просто видим, как на экране перед нами проходят синусоидальные волны, амплитуда которых пульсирует, но если сделать пульсации более быстрыми, то мы увидим нечто похожее на то, что пока­зано на фиг. 48.1. По мере увеличения разницы между часто­тами «вершины» сближаются все больше и больше. Если амплитуды не равны друг другу, если мы один сигнал сделаем слабее другого, то образуется волна, амплитуда которой, как это и ожидается, никогда не становится равной нулю. Все получается так, как нужно, независимо от того, электричество это или звук.

Но возможно и обратное явление! При радиопередаче ис­пользуют так называемую амплитудную модуляцию (AM). Вот как это делается. Радиопередатчик возбуждает электри­ческие колебания очень высокой частоты. Для радиовещания, например, используется частота 800 кгц. Если включен этот несущий сигнал, то передатчик будет излучать волны с часто­той 800 000 колебаний в секунду, причем амплитуда их по­стоянна. Информация же (зачастую совершенно бесполезная, вроде того, какую марку автомобиля вам следует приобрести) передается следующим образом: когда кто-то говорит в микро­фон, амплитуда несущего сигнала изменяется «в ногу» с коле­баниями звука, приходящего в микрофон.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




4a. Кинетика. Теплота. Звук отзывы


Отзывы читателей о книге 4a. Кинетика. Теплота. Звук, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x