Ричард Фейнман - 4. Кинетика. Теплота. Звук

Тут можно читать онлайн Ричард Фейнман - 4. Кинетика. Теплота. Звук - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    4. Кинетика. Теплота. Звук
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 4. Кинетика. Теплота. Звук краткое содержание

4. Кинетика. Теплота. Звук - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

4. Кинетика. Теплота. Звук - читать онлайн бесплатно полную версию (весь текст целиком)

4. Кинетика. Теплота. Звук - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Но если заключить все атомы и осцилляторы в ящик, так чтобы свет не смог уйти в бесконечность, тепловое равновесие может наступить. Мы можем поместить газ в ящик, в стен­ках которого есть и другие излучатели, испускающие свет внутрь ящика, а еще лучше соорудить ящик с зеркальными стен­ками. Этот пример поможет лучше понять, что произойдет. Итак, мы предполагаем, что все излучение от осциллятора ос­тается внутри ящика. Осциллятор и в этом случае начинает излучать, но довольно скоро он все же соберет свое значение kT кинетической энергии. Происходит это потому, что сам ос­циллятор будет освещаться, так сказать, собственным светом, отраженным от стенок ящика. Вскоре в ящике будет много света и, хотя осциллятор продолжает излучать, часть света будет возвращаться и возмещать осциллятору потерянную им энергию.

А теперь подсчитаем, насколько должен быть освещен ящик при температуре Т, чтобы рассеяние света на осцилляторе обес­печивало его как раз такой энергией, какая нужна для под­держания излучения. Пусть атомов в ящике совсем немного и находятся они далеко друг от друга, так что наш осциллятор идеальный, не имеющий иного трения, кроме радиационного. Теперь заметим, что при тепловом равновесии осциллятор делает сразу два дела. Во-первых, он излучает, и мы можем подсчитать энергию излучения. Во-вторых, он в возмещение получает точно такое же количество энергии в результате рассеяния на нем света. Поскольку энергия ниоткуда больше притечь не может, то эффективное излучение — это как раз та часть «общего света», которая рассеялась на осцилляторе.

Таким образом прежде всего мы вычисляем энергию излучаемую в 1 сек - фото 36

Таким образом, прежде всего мы вычисляем энергию, из­лучаемую в 1 сек осциллятором с заданной энергией. (Мы по­заимствуем для этого в гл. 32, посвященной радиационному трению, несколько равенств и не будем здесь приводить их выводы.) Отношение энергии, излученной за радиан, к энер­гии осциллятора называется 1/Q [см. уравнение (32.8)] : 1/Q= (dW/dt)/( w 0 W. Используя величину у (постоянную затуха­ния), можно записать это в виде 1/ Q= g / w 0 , где w 0— собствен­ная частота осциллятора, если g очень мала, a Q очень велико. Излученная за 1 сек энергия равна

Излученная за 1 сек энергия просто равна произведению g на энергию осциллятора. Средняя энергия нашего осциллятора равна kT, поэтому произведение g на kT — это среднее значе­ние излученной за 1 сек энергии:

= g kT. (41.5)

Теперь нам нужно только узнать что такое g Эту величину легко найти из - фото 37

Теперь нам нужно только узнать, что такое g. Эту величину легко найти из уравнения (32.12):

где r 0 = e 2 /mc 2 классический радиус электрона, и мы положи­ли Я = 2pс/w 0.

Окончательный результат для средней скорости излучения света вблизи частоты w - фото 38

Окончательный результат для средней скорости излучения света вблизи частоты w 0таков:

Теперь надо выяснить, сильно ли должен быть освещен ос­циллятор. Освещение должно быть таким, чтобы поглощен­ная осциллятором энергия (и впоследствии рассеянная) была в точности равна предыдущей величине. Иначе говоря, излучен­ный свет — это свет, рассеянный при освещении осциллятором в полости. Итак, нам остается рассчитать, сколько света рас­сеивается осциллятором, если на него падает какая-то — неиз­вестная — доза излучения. Пусть I(w)dw— энергия света час­тоты w в интервале частот d w(ведь у нас нет света точно задан­ной частоты; излучение распределено по спектру). Таким образом, I(w) — это спектральное распределение, которое нам надо найти. Это тот цвет огня, который мы увидим внутри печи при температуре Т, если откроем дверцу и заглянем внутрь.

Сколько же все-таки света поглотится? Мы уже определяли количество излучения, поглощаемого из заданного падающего пучка света, и выразили его через эффективное сечение. Это соответствует тому, как если бы мы предполагали, что весь свет, падающий на площадку определенной площади, погло­щается. Таким образом, полная переизлученная (рассеянная) интенсивность равна произведению интенсивности падающего света I(w)dw на эффективное сечение а.

Мы вывели формулу для эффективного сечения [см. уравне­ние (31.19)1, не включающую затухания. Нетрудно повторить этот вывод снова и учесть трение, которым мы тогда пренебре­гли. Если это сделать, то, вычисляя эффективное сечение по прежнему образцу, мы получим

Пойдем дальше s s как функция частоты имеет более или менее заметную величину - фото 39

Пойдем дальше s s как функция частоты имеет более или менее заметную величину - фото 40

Пойдем дальше; s s как функция частоты имеет более или менее заметную величину только для w около собственной час­тоты w 0. (Вспомним, что для излучающего осциллятора Q — порядка 10 8.) Когда со равна w 0, осциллятор рассеивает очень сильно, а при других значениях w он почти не рассеивает сов­сем. Поэтому можно заменить w на w 0, а w 2-w 2 0на 2w 0(w-w 0); тогда

Теперь почти вся кривая загнана в область около ww 0 Фактически мы не должны - фото 41

Теперь почти вся кривая загнана в область около w=w 0. (Фактически мы не должны делать никаких приближений, но легче иметь дело с интегралом, в котором подынтегральное вы­ражение несколько проще.) Если умножить интенсивность в данном интервале частот на эффективное сечение рассеяния, то получится энергия, рассеянная в интервале dw. Полная рассеянная энергия — это интеграл по всем w. Таким образом,

Теперь мы положим dW s /dt=3gkT. Но почему здесь стоит 3? Потому что в гл. 32 мы предполагали, что свет поляризован так, что может раскачивать осциллятор. Если бы мы исполь­зовали осциллятор, способный раскачиваться только в одном направлении, а свет был бы, скажем, поляризован неверно, то он не рассеивался бы совсем. Поэтому мы должны либо усреднить эффективное сечение рассеяния на осцилляторе, способном раскачиваться только в одном направлении, по всем направле­ниям падающих пучков и поляризации света в пучке, либо, что легче сделать, представить себе, что наш осциллятор пос­лушно следует за полем, каким бы оно ни было там, где он на­ходится. Такой осциллятор, который одинаково легко раска­чивается в любом из трех направлений, имеет среднюю энергию 3kT, потому что у него 3 степени свободы. А раз 3 степени сво­боды, то надо писать 3gkT.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




4. Кинетика. Теплота. Звук отзывы


Отзывы читателей о книге 4. Кинетика. Теплота. Звук, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x